
Public-Private Catastrophe Risk-Sharing:
Theory and Application to COVID-19

Ruo Jia, Jieyu Lin, Hanyang Wang

Abstract

Little is known about how an ex-ante public-private risk-sharing program affects the efficiency

of a catastrophe risk market and the behavior of market players. We develop a dynamic game

model that analyzes three decision makers—individuals, a private insurer, and a government

acting as reinsurer—to derive their optimal pricing, capital, and purchasing decisions for efficient

catastrophe risk-sharing. In the equilibrium, government reinsurance addresses private insurance

market failure and improves social welfare through the product quality and capital cost channels.

The effects of these two channels wax and wane depending on the market structure. As a tradeoff,

government reinsurance may decrease individuals’ expected utilities and increase the insurer’s

default probability as competition is insufficient in catastrophe insurance markets. In the context

of COVID-19, we show that government reinsurance can improve the viability and efficiency of

pandemic insurance but should be coupled with anti-monopoly and social-distancing policies to

mitigate its downside.
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1. Introduction

Unlike an independent risk, a catastrophe risk affects many correlated risk units and causes

losses to a large number of correlated individuals and businesses when a catastrophe event occurs.

For example, heavy rainfall may cause losses to many farmers in the region where it occurs. The

COVID-19 pandemic is another example; it has taken the lives and health of many people and has

caused business interruptions worldwide. As a result of the high risk correlation, the aggregate

losses of a catastrophe risk are large, heavy-tailed, and more likely to endanger the solvency of

insurers even though the loss to each individual might be limited (Charpentier and Le Maux, 2014).

This paper develops a theoretical framework for analyzing the optimal public-private catastrophe

risk-sharing and applies it to the ongoing COVID-19 pandemic.

Catastrophe (re)insurance facilitates and accelerates post-catastrophe economic recovery (Von

Peter et al., 2012). However, the increasing frequency and severity of catastrophe risks endanger

the viability of private catastrophe (re)insurance (Froot, 2001). The private (re)insurance market

fails to insure (or under-insures) catastrophe risks due to individuals’ inadequate willingness to

pay (Kousky and Cooke, 2012), high capital costs (Zanjani, 2002), ambiguous risk distribution

(Hogarth and Kunreuther, 1985), and non-diversification traps (Ibragimov et al., 2009). In 2017,

the insured losses from catastrophes worldwide reached the highest level ever in a single year at

USD 144 billion (Swiss Re, 2018). Catastrophe events are expected to increase in both frequency

and severity due to epidemics/pandemics, climate change, and cyber attacks.

The COVID-19 pandemic has caused the most severe health and economic crisis in a century.

As of November 15, 2020, it has infected 53.8 million people worldwide and killed 1.3 million of

them (WHO, 2020). The COVID-19-related business interruption losses in the U.S. are estimated

at $1 trillion per month (Hartwig et al., 2020). The uncertainties that surround the COVID-19

pandemic, including the mortality rate and the immunity duration, reduce the optimal initial rate of

confinement and thus accelerate the spread of the pandemic (Gollier, 2020). Individuals are willing

to pay a price of 24% of the 2019 GDP per person in the U.S. to reduce the probability of COVID-

19 infection by 90% (Echazu and Nocetti, 2020). However, the consequences of a pandemic cannot

be covered in their entirety by the private insurance market (Richter and Wilson, 2020). Standard

business interruption policies typically exclude communicable diseases, which can only be insured

via endorsements with limited capacity and restrictive terms (Munich Re, 2020), thus calling for

public-private partnership in pandemic risk-sharing (Hartwig et al., 2020).
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Governments respond to catastrophe risks by offering two types of catastrophe risk-sharing

programs: (i) ex-ante (re)insurance programs and (ii) ex-post relief programs. An ex-ante govern-

ment (re)insurance program functions to prepare for catastrophe events and create reserves in order

to prevent insurer default. An ex-post government relief program bails out catastrophe victims or

private insurers after events occur and when private insurers default or are about to default. Both

ex-ante and ex-post programs are common in practice. Two government (re)insurance programs

are under discussion in the U.S. to support future pandemic risk-sharing: the Pandemic Risk Insur-

ance Act and the Business Continuity Protection Program. In China and Japan, full indemnity of

COVID-19 related medical expenses from social insurance and general taxes is offered to qualified

COVID-19 patients—an example of government-provided ex-post catastrophe relief. After the

9/11 terrorist attacks, the U.S. Terrorism Risk Insurance Act created a federal-level system to sup-

port sharing of certain insured losses resulting from a certified act of terrorism, which is in essence

a type of excess-of-loss reinsurance provided by the government. In France, insurance companies

purchase catastrophe reinsurance from the Caisse Centrale de Réassurance, a state-owned reinsurer

that provides insurers operating in France with coverage against natural catastrophes and uninsur-

able risks. Charpentier and Le Maux (2014) model the catastrophe risk market with an ex-post

catastrophe relief program that covers the default liability of a private insurer. Our paper develops

a new model to complement Charpentier and Le Maux (2014) by analyzing the catastrophe risk

market with an ex-ante government reinsurance program.

We develop a dynamic game model with three decision makers: a continuum of homogenous

individuals, a private insurer, and a government acting as reinsurer. Individuals maximize their

expected utilities by choosing whether to buy the catastrophe insurance. The insurer maximizes

its expected profit by determining its holding capital, deciding whether to buy the government

reinsurance, and (in some markets) setting the catastrophe insurance premium. The government

maximizes the social welfare, defined as the expected social utility, by setting the reinsurance

premiums (charged to the insurer) and catastrophe taxes (charged to all individuals exposed to the

catastrophe risk).

The model enables us to fully characterize the equilibrium of the catastrophe risk market with

government reinsurance (GR) and to compare it with the cases of no reinsurance (NR) and pri-

vate reinsurance (PR). In the GR equilibrium, the insurer is willing to provide full insurance to all

individuals. Individuals’ demand for the catastrophe insurance (i.e., individuals’ maximum will-
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ingness to pay for catastrophe risk transfer) is higher than that in the NR and PR equilibriums.

Government reinsurance improves social welfare. As a tradeoff, the government reinsurance may

decrease individuals’ expected utilities and increase the insurer’s default probability in catastrophe

risk markets where competitions are insufficient.

The three-decision-maker model introduces the government’s tradeoff between the use of catas-

trophe taxes and the use of reinsurance premiums to fund the program and to identify new channels

whereby government risk-sharing programs can impact the catastrophe risk market. Reinsurance,

whether private or provided by the government, serves the same default-preventing function as an

insurer’s holding capital but with lower cost (Shiu, 2010). Thus, reinsurance improves social wel-

fare and decreases the insurer’s default probability compared to the case of no reinsurance (Bernard

and Tian, 2009). Government reinsurance with the tax-premium tradeoff further improves the so-

cial welfare over private reinsurance through two channels: (i) the product quality channel: the

insurer holds more capital to improve the product quality of the catastrophe insurance, and (ii) the

capital cost channel: the individuals increase their maximum willingness to pay for catastrophe

risk transfer and thus save the capital cost of the catastrophe insurance. These two channels have

opposite impacts on the insurer’s default probability: Government reinsurance decreases the in-

surer’s default probability through the product quality channel but increases it through the capital

cost channel. Both channels highlight the strategic behavior changes of individuals and the insurer.

As competition in a catastrophe insurance market decreases (increases), the insurer has stronger

(weaker) market pricing power and is more like a price maker (taker), the product quality channel

weakens (strengthens) and the capital cost channel strengthens (weakens). The product quality

channel shuts down in a monopolistic catastrophe insurance market, while the capital cost channel

shuts down in a perfectly competitive market.

Our model calibrations based on various COVID-19 scenarios show that government reinsur-

ance can improve the efficiency of pandemic risk-sharing compared to the NR and PR cases, and

the efficiency gains are larger as the pandemic spreads. However, the efficiency gains from gov-

ernment reinsurance are insufficient to compensate the welfare losses when the pandemic becomes

massively widespread. Therefore, any government pandemic (re)insurance program should be cou-

pled with social distancing measures to control the spread of the disease. Moreover, the efficiency

gains of government reinsurance are traded off with a “pandemic tax” that decreases the expected

utilities of individuals in the pandemic risk market, where competition is typically insufficient.
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Our model is extended to incorporate a key difference between the COVID-19 pandemic and

many natural catastrophes, i.e., the inter-temporally correlated pandemic losses. Both private and

government reinsurance can increase the viability of pandemic insurance and encourages business-

es to open, given any level of correlation among individual risks. However, government reinsurance

is less effective than private reinsurance to ensure the insurance viability when the inter-temporal

correlation is present. When the inter-temporal correlation is excessively large, neither government

nor private reinsurance can help to sustain the market. Therefore, any government pandemic rein-

surance program should be coupled with business lockdown policies to reduce the inter-temporal

correlation of pandemic losses.

Last but not least, our results suggest that the Pandemic Risk Insurance Act discussed in the

House (a government reinsurance program) might be more efficient in terms of social welfare and

more financially sustainable than the industry-backed Business Continuity Protection Program (a

government insurance program) in the low-competition and low-frequency pandemic risk environ-

ment. The benefits of the tax-premium tradeoff in a government reinsurance program also inform

the optimal design of PRIA—a mix of funding from taxpayers and private insurers.

Contribution and Relation to Literature We contribute to modeling the catastrophe risk

markets by jointly analyzing both insurance and reinsurance markets that involve three decision

makers in one dynamic game. Connections between these two markets are important to the e-

quilibrium of catastrophe risk-sharing because reinsurance changes the strategic decisions of both

individuals and insurers (Lewis and Murdock, 1996). However, existing models consider either

(i) the primary catastrophe insurance market where the insurer(s) manage catastrophe risks and

interact with individuals (Zanjani, 2002; Boyer and Nyce, 2013; Charpentier and Le Maux, 2014)

or (ii) the catastrophe reinsurance market where insurer(s) and reinsurer(s) interact and make de-

cisions given the insurer’s catastrophe risk portfolio (Froot, 2001; Ibragimov et al., 2009). Our

model captures the incentives and endogenizes the decisions of individuals, a private insurer, and a

government reinsurer. It is the first theoretical framework that formalizes the interaction and con-

nection between the insurance and reinsurance markets for catastrophe risks and that reveals the

tradeoff between the expected social utility and the insurer’s default probability for a government

risk-sharing policy.

We also contribute to identifying the impact channels of government risk-sharing programs on

the equilibrium of an insurance market. Existing insurance models of public-private risk-sharing
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either assume away the insurer’s default probability (Boulatov and Dieckmann, 2012; Boyer and

Nyce, 2013; Lehr, 2014) and/or consider the insurer’s holding capital to be exogenous (Charpentier

and Le Maux, 2014). However, identifying the channels through which government risk-sharing

programs change the strategic behaviors of market players and introduce the tradeoff between the

expected social utility and the insurer’s default probability, probability requires us to simultane-

ously endogenize the default probability and the capital decision of the insurer. Our new model

identifies for the first time the product quality and capital cost channels of a government risk-

sharing program’s impact and their wane-and-wax patterns depending on the market structure of

catastrophe insurance.1 In this sense, our three-decision-maker risk-sharing model and its suggest-

ed government reinsurance solution contribute to the ongoing discussion on efficient risk-sharing

using public-private partnerships (Krueger and Perri, 2011; Charpentier and Le Maux, 2014).

Last but not least, we also contribute to modeling COVID-19 and future pandemic risks. The

classic Susceptible-Infected-Recovered (SIR) in the public health literature was developed by K-

ermack and McKendrick (1927) and has been widely used to investigate the optimal strategies to

measure and to control for the pandemic risks, for example, to estimate the course of pandemics

(Pindyck, 2020), to measure the pandemic-related economic losses (Hall et al., 2020), and to an-

alyze public health policies including optimal confinement intensity (Gollier, 2020) and infection

status testing (Brotherhood, 2020). To our best knowledge, the SIR model has not yet been con-

nected with a model of insurance markets and therefore applied to analyze the optimal pandemic

risk-sharing. In this paper, we first-time connect the SIR model with a catastrophe risk-sharing

model by formalizing the relationship between the basic reproduction number (R0) and cumulative

infection rate in the former, and the individual risk correlation in the latter. This connection enables

us to analyze the pandemic risk management from the public-private risk-sharing perspective. It

extends the scope of application of the SIR model to the insurance markets.

The rest of the paper is structured as follows. Section 2 sets up the model. Section 3 reports

the equilibrium with government reinsurance and our propositions. Section 4 analyzes the impact

channels and pricing of government reinsurance. Section 5 applies the catastrophe risk-sharing

1Cummins et al. (2002) and Zanjani (2002) endogenize both the default probability and the capital decisions of an
insurer but do not analyze government-provided risk-sharing. Schlütter (2018) finds that premium tax and corporate
tax impede the insurer’s incentive of holding capital, however, he focuses on the effect of general tax policy on non-life
insurers, in which government does not participate in risk-sharing.
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model to the COVID-19 pandemic. Section 6 discusses alternative government intervention poli-

cies. Section 7 concludes. All proofs are provided in the appendices.

2. Model

A large number of homogenous individuals in a region (normalized to 1) is exposed to the

catastrophe risk that may cause a loss l (l > 0) to each individual with a probability of p (0 < p <

1).2 In the region, individual risks have a correlation of δ (0 < δ < 1). Once the catastrophe event

occurs, an x (0≤ x ≤ 1) share of the unit mass of individuals suffers losses. Thus, the cumulative

distribution of x, F(x|p,δ ), is determined by the probability p that an individual suffers a loss and

by the correlation among individual risks δ . The catastrophe-hit share of population x satisfies

F(x|p,δ ) =
∫ x

0
f (z)dz,

∫ 1

0
x f (x)dx = p. (1)

The probability p is equal to the expectation of the catastrophe-hit share of population x. The

risk correlation δ determines the shape of x’s distribution. The higher the correlation δ is, the more

heavy-tailed the x’s distribution is, and the more catastrophic the risk is. The individuals and the

insurer are assumed to have symmetrical information on the exogenous risk distribution.3

Next, we develop our three-decision-maker model based on the above Charpentier and Le

Maux’s (2014) catastrophe risk definition. Figure 1 illustrates the timeline of the dynamic game.

The government offers reinsurance coverage by charging a catastrophe tax T (T ≥ 0) to each

individual in the region and a reinsurance premium M (M ≥ 0) to the insurer. Observing the

catastrophe tax and the reinsurance premium, the insurer decides whether to buy the reinsurance

R ∈ {0,1}, determines its own holding capital C (C≥ 0),4 and sets the primary insurance premium

α (α > 0).5 Next, observing the decisions of the government and the insurer, all homogeneous

2Individuals refer to all inhabitants and businesses in a region that are exposed to the catastrophe risk (Charpentier
and Le Maux, 2014), e.g., all inhabitants and businesses in one flood zone or in one COVID-19 affected region.

3This assumption excludes adverse selection and moral hazard and is consistent with existing literature in that
the catastrophe risks are not private information (Jaffee and Russell, 1997; Ibragimov et al., 2009; Charpienter and
Le Maux, 2014). In practice, scientific forecasts and guidance for natural disasters are publicly available to both
individuals and insurers. For example, the U.K. Environment Agency publishes flood risk maps, which are suitable
to guide both individuals and insurers. Some other catastrophe risks, such as terrorism attacks and the COVID-19
pandemic, are symmetrically uninformed to and gradually learned by both individuals and insurers. We allow for and
analyze the moral hazard problem in Sections 5.2 and 5.3.

4The financial regulatory authority may impose a minimum capital requirement as a constraint on the insurer and
thus on the market equilibrium. See Section 6.2 for a detailed discussion on solvency regulation.

5Depending on the market structure and the price regulation if any, the insurer can be a price maker, a price taker,
or in between with certain market pricing power. Our conclusions hold across market structures and in a wide range of
insurance prices between the insurer’s minimum acceptable premium and individuals’ maximum willingness to pay.
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individuals simultaneously decide whether to buy the catastrophe insurance. Individuals make the

purchasing decisions based on the catastrophe insurance price and its product quality (i.e., the

catastrophe insurer’s default probability).6 The equilibrium of this dynamic game is derived by

backward induction starting from the last decision maker—the individuals.

Figure 1: Timeline of the Dynamic Game

2.1. Individuals’ Decision

All individuals are assumed to have the same utility function U(·) that is twice differentiable,

strictly increasing, and concave. The utility is without initial wealth, depends on the wealth loss,

and is always negative.7 Each individual receives the indemnity I(x) if she bought the insurance.

Thus, an individual’s expected utility is

Ui(α,T )≡


∫ 1

0 xU (−α−T − l + I(x)) f (x)dx+
∫ 1

0 (1− x)U(−α−T ) f (x)dx, if buying insurance,

pU(−l−T )+(1− p)U(−T ), if not buying insurance.
(2)

An individual buys the catastrophe insurance if and only if her expected utility of buying is

equal to or greater than her expected utility of not buying.8 Ceteris paribus, a higher insurance

premium decreases an individual’s expected utility if she buys the catastrophe insurance. Thus,

there exists a maximum willingness to pay α∗(C,T ) for each individual such that she is indifferent

between buying and not buying catastrophe insurance at this price.9

6The insurer’s financial strength is a key determinant of insurance purchasing decisions and in particular for catas-
trophe risk coverage (Zanjani, 2002). The financial strength is determined by an insurer’s holding capital and the
reinsurance coverage. The information on an insurer’s financial strength is usually publicly available and easy to in-
terpret as a rating or solvency ratio in solvency reports. Empirically, individuals are willing to pay a higher price for a
safer product with lower insolvency risks (Cummins and Danzon, 1997).

7If there is no loss, individuals achieve the highest utility of zero, U(0) = 0. This type of utility without initial
wealth is commonly used in catastrophe research (see, e.g., Ibragimov et al., 2009).

8Without loss of generality, we assume that individuals buy insurance when buying and not buying are indifferent.
If individuals do not buy in the border case, the catastrophe insurance premium in the equilibrium will be individuals’
maximum willingness to pay minus a sufficiently small positive number ε . All our conclusions hold.

9The α∗(C,T ) captures the positive relationship between a safer insurance product (i.e., lower default probability
with more holding capital) and higher maximum willingness to pay of individuals (Cummins and Danzon, 1997).
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2.2. Insurer’s Decisions

The insurer offers a full coverage for the catastrophe risk.10 Its expected profit is as follows:

Π(α,C,R,M)≡


∫ x

0 [(λα−RM)− (λxl−RIre(x))] f (x)dx− [1−F(x)]C− rC, i f α ≤ α∗(C,T ),

0, i f α > α∗(C,T ),
(3)

where λ (0 ≤ λ ≤ 1) is the share of individuals that purchases the catastrophe insurance, Ire(x) is

the reinsurance indemnity, and x is the default threshold of the catastrophe-hit share of individuals,

above which the insurer defaults.

x≡ 1
λ l

[λα +C+R(Ire(x)−M)]. (4)

The first term of Eq.(3) is the insurer’s expected profit when it is solvent (0 < x≤ x), which is

equal to its retained premium minus its retained loss. The second term is the insurer’s expected loss

when it is insolvent (x > x); that is, the insurer loses all its holding capital C with the probability

of insolvency 1−F(x). The last term is the insurer’s cost of capital rC, a cost the insurer has to

bear no matter it defaults or not, which reflects the expected return of the insurer’s shareholders.

The insurer is better off with a higher insurance premium and less holding capital. The insurer

earns zero profit if it sets the catastrophe insurance premium α above an individual’s maximum

willingness to pay α∗(C,T ), which is essentially equivalent to leaving the market.

The insurer is willing to enter the catastrophe insurance market if and only if it earns a non-

negative expected profit from this business. Thus, there exists a minimum acceptable premium

α(C,M) for the insurer such that its expected profit is zero.11

The insurer’s profit optimization problem depends on the market structure of the catastrophe

insurance, i.e., the insurer’s market pricing power. In a monopolistic market, the insurer is a price

maker. It maximizes its expected profit by determining the catastrophe insurance price α , its own

capital C, and whether to buy the reinsurance R: maxα,C,R Π(α,C,R,M), s.t. α > 0, C ≥ 0, R ∈

{0,1}. In a perfectly competitive market, the insurer is a price taker. Given an exogenous market

price α̃ (α̃ > 0), it decides its capital C and whether to buy the reinsurance R such that its expected

10In practice, property insurance without deductible or co-insurance is available in the market, such as, the earth-
quake insurance in Japan and the Spanish catastrophe program for natural disasters and political-social events (Con-
sorcio de Compensación de Seguros).

11The insurer is assumed to be risk-neutral (Biais et al., 2010; Einav et al., 2010). Thus, its expected utility is equal
to its expected profit. A risk-neutral insurer may still demand reinsurance to release/save capital, to acquire technical
assistance or tax advantages, to meet regulatory requirements, and to avoid bankruptcy cost (Hoerger et al., 1990;
Huang and Tzeng, 2007; Bernard and Tian, 2009). Similarly, the government is also assumed risk-neutral in the paper.
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profit is zero, Π(α̃,C,R,M) = 0. In markets with imperfect competition, we define the catastrophe

insurer’s market pricing power 0 ≤ η ≤ 1 to capture a continuous change in the insurance price

as the market structure moves from monopoly (η = 1) to perfect competition (η = 0). Thus, in

any markets with imperfect competition, the insurer sets the catastrophe insurance premium at a

linear combination of individuals’ maximum willingness to pay (i.e., the price in a monopolistic

market) and the exogenous market price in a perfectly competitive market α(η) = ηα∗(C,T )+

(1−η)α̃ and faces a profitability constraint Π(α(η),C,R,M) = ηΠ∗(M,T ), where Π∗(M,T ) is

the optimized expected profit of a monopoly insurer given any (M,T ).12

2.3. Government’s Decisions

The government offers a excess-of-loss per event (CAT XL) reinsurance treaty at a reinsurance

premium M.13 The reinsurance covers the catastrophe losses above the insurer’s retention K (K ≥

0) with a coverage K (K ≥ 0). The upper limit of the reinsurance is thus K +K. Specifically,

K = 0 if the government offers no reinsurance and the corresponding reinsurance premium is

zero, M = 0. When K ≥ l−K, the government offers a full reinsurance that covers all losses

above the insurer’s retention and is essentially equivalent to unlimited reinsurance coverage.14 The

reinsurance premium M and the catastrophe tax T are endogenously determined in our model given

12These linear extrapolations on insurance price and expected profit capture the pricing and profitability constraints
imposed by competitive pressure. In markets with imperfect competition, the insurer can raise the premium by holding
more capital and earns a positive expected profit, different from a price taker. The premium α(η) is a weighted sum
of individuals’ maximum willingness to pay which is determined by the insurer’s capital decision, and the exogenous
market price α̃ . The insurer with larger market pricing power η has a stronger impact on the premium α(η) and
earns a larger share of the monopolistic expected profit. The insurer with lower market pricing power η faces a tighter
profitability constraint imposed by competitive pressure. Alternative assumptions that satisfy a positive relationship
between the insurance price and market pricing power ∂α(η)/∂η > 0 and a positive relationship between the expect-
ed profit and the market pricing power ∂Π(α(η),C,R,M)/∂η > 0 will not change the qualitative conclusions but
mathematically more cumbersome.

13The CAT XL treaty is the type of reinsurance product most commonly used for catastrophe risks. It covers the
aggregate losses caused by a single event that exceed an insurer’s retention and up to an agreed coverage limit. The
U.S. TRIA and French CCR programs use this type of reinsurance contract. The insurers’ retention of TRIA is 20%
of the direct premium income of the preceding year. The retention of CCR is 400 million euros per event.

14Our model allows for the specification that government offers the primary insurance by assuming all catastrophe
risks and all premiums of the original insurer (i.e., K = 0, K = l, and M = α). Abstracting away the private insur-
ance market, however, prevents us to analyze the optimal risk-sharing among the public, the private, and consumers.
Existing literature also points out that government catastrophe insurance confronts challenges and frictions that were
not present in government reinsurance, including political constraints in risk-based pricing and discriminated cover-
age (Zanjani, 2008), excessive operational costs for serving individual clients (Bruggeman et al., 2012), and the lack
of expertise in underwriting and claim adjustment (Boyer and Nyce, 2013). Therefore, previous studies argue for the
government’s advantages being the reinsurer of last resort to cover the losses in excess layers (Kousky and Kunreuther,
2018). We refer to Boyer and Nyce (2013) for modeling the government-provided catastrophe insurance.
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any layer of reinsurance coverage (K,K), which varies from programs to programs in practice.15

Social welfare has been widely used as the goal of a social planner (or a central agency) in

insurance markets when considering government intervention to restore or improve market func-

tioning (see e.g., Huang and Tzeng, 2007; Einav et al., 2010; Tirole, 2012). Huang and Tzeng

(2007) analyze the optimal tax deductible for net losses in insurance markets. They define the gov-

ernment’s objective as the weighted sum of the insured’s expected utility and the insurer’s expected

profit. Einav et al. (2010) develop a framework to analyze the efficiency of insurance markets and

the welfare gains of government intervention. They define the welfare of insurance markets as the

total surplus of consumers and insurer(s). Tirole (2012) uses the expected social welfare, i.e., the

sum of a seller’s gross utility and buyers’ expected profit, as the objective function of the govern-

ment. The expected social welfare of these models directly follows the standard consumer and

producer theory in microeconomics.

Following Tirole (2012), we define the social welfare in a catastrophe risk market as the sum

of individuals’ expected utilities and the insurer’s expected profit:16

V (α,C,R,M,T )≡Ui(α,T )+Π(α,C,R,M). (5)

Given the optimal decisions of the insurer and individuals, the optimization problem of the

government is as follows:

max
M,T

V (α,C,R,M,T ) ,

s.t. T ≥ 0, M ≥ 0, ηΠ
∗(M,T )≥ 0,

T +M ≥ E[Ire(x)].

(6)

15The optimal retention and limit of a reinsurance product depends on the type of catastrophe risks and on the
underwriting appetite of the original insurer and the reinsurer, which vary from region to region and are adjusted from
time to time. For example, the reinsurance limit of Dutch Agriver increased after the excessive agricultural damage
caused by heavy rainfall in 2002 and expanded to cover frost damage to fruit farming in 2007. The insurers’ retention
of TRIA grew from 1% of the direct premium income per event in 2002 to 20% in 2007. Our paper focuses on the
optimal government intervention policies and optimal pricing of the government reinsurance for efficient risk-sharing.
We refer to Bernard (2013) for discussion on the optimal catastrophe reinsurance design.

16Alternatively, we consider the government’s objective function as a weighted sum of individuals’ expected utilities
and the insurer’s expected profit, i.e., V (α,C,R,M,T )≡ωUi(α,T )+(1−ω)Π(α,C,R,M) (Huang and Tzeng, 2007),
and the total surplus of consumers and the insurer, i.e., the sum of certainty equivalents for consumers and profits of
firms (Einav et al., 2010). Our conclusions remain intact. We note that industrial organization studies usually maximize
consumer surplus/utility as the goal of a social planner (Goodspeed and Haughwout, 2012; Boyer and Nyce, 2013). In
our model, the specification in a perfectly competitive market allow the government to be concerned about consumers’
welfare only and all our conclusions hold. The solvency regulation literature usually minimizes an insurer’s default
probability as the goal of a regulator. We analyze the tradeoff between social welfare and default probability in
Proposition 3.
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The last inequality is an actuarial fair condition (i.e., the budget and sustainability constraint)

of the government reinsurance program, where the sum of catastrophe tax T and reinsurance pre-

mium M should be no less than the expected loss covered by the government reinsurance.17 For

simplicity, the model abstracts away the operational costs of government reinsurance and therefore

the price of reinsurance, T +M, is actuarially fair.18 The sovereign government eliminates the

default risk of the reinsurance program (Froot and O’Connell, 2008; Bernard and Tian, 2009).

Given the reinsurance product, we are able to specify the insurance indemnity I(x) and the

reinsurance indemnity Ire(x) below. The insurer defaults when x > x and pays its residual fund due

to its limited liability. Catastrophe victims are homogeneous in loss amount and thus have equal

rights to claim the residual fund (Charpentier and Le Maux, 2014).

I(x)≡

l, if x≤ x,

λα+C+R(K−M)
λx , if x > x,

(7)

Ire(x)≡min{K,max{0,λxl−K}}. (8)

2.4. No Reinsurance and Private Reinsurance Cases

If no reinsurance is available in the market, our model degenerates to T = 0 and K = M = 0.

For private reinsurance, the model degenerates to T = 0 and thus the private reinsurance can be

denoted as (K,K,Mp). To create a fair comparison with the government reinsurance, the private

reinsurance premium is also actuarially fair, Mp = E[Ire(x)], and the private reinsurer is also absent

of default risk. The operational costs of private reinsurance are abstracted away for simplicity. All

our conclusions hold given the same operational costs of private and government reinsurance.

In a NR equilibrium, the insurer sets the premium at αe
n , holds the optimal capital Ce

n, and

earns the expected profit Πe
n. The catastrophe insurance market fails to exist when individuals’

maximum willingness to pay α∗n (C
e
n) is lower than the insurer’s minimum acceptable premium

αn(C
e
n). Otherwise, each individual purchases the catastrophe insurance with expected utility Ue

in.

Therefore, the expected social utility is V e
n =Ue

in +Πe
n.

In a PR equilibrium, the insurer sets the premium at αe
p, holds the optimal capital Ce

p, purchases

the private reinsurance Re = 1, and earns the expected profit Πe
p. Individuals’ maximum willing-

17In Section 4.2, we discuss how our government reinsurance program with a risk-based, actuarially fair, and af-
fordable price can be sustainable and break even by itself over time.

18Our conclusions hold if we consider a cost loading r′ > 0 that is not excessively large (see Section 4.2 for details).

11



ness to pay α∗p(C
e
p) is always higher than the insurer’s minimum acceptable premium α p(C

e
p) and

thus each individual purchases the catastrophe insurance with expected utility Ue
ip. Therefore, the

expected social utility is V e
p =Ue

ip+Πe
p. The details of the NR and PR equilibriums are document-

ed in Appendices A1 and A2, respectively.

3. Equilibrium and Proposition

The equilibrium of a catastrophe risk market with government reinsurance is characterized by a

set of optimal decisions made by the government, the insurer, and individuals. Given the event size

x∼ F(x|p,δ ), per-capita loss l, the insurer’s retention K, reinsurance coverage K, cost of capital r,

market pricing power η , and each individual’s utility function U(·), we derive a unique sub-game

perfect equilibrium that jointly satisfies the following conditions. The proof of the equilibrium is

presented in Appendix A3.

(1) The government offers the catastrophe reinsurance at the optimal balance of catastrophe tax

and reinsurance premium, which satisfies its budget and sustainability constraint (i.e., the ac-

tuarial fair condition) and achieves the best balance between individuals’ expected utilities and

the insurer’s expected profit:

Me +T e = E[Ire(x)], (9)

− ∂

∂T
Ui (α

e,T e) =
∂

∂T
Π(αe,Ce,Re,Me) . (10)

Figure 2 illustrates the government’s optimal balances between catastrophe tax and reinsurance

premiums to maximize the expected social utility:

Figure 2: Tradeoff between Catastrophe Tax and Reinsurance Premium

Note: The curves represent indifferent expected social utilities. The line represents the actuarially fair condition
in Eq.(9). Both catastrophe tax and reinsurance premium decrease the expected social utility and thus the curve
is concave to the origin. The tangent point Ere is the equilibrium in a catastrophe reinsurance market.

(2) Given the optimal catastrophe tax and reinsurance premium, the insurer purchases the govern-

ment reinsurance:

12



Re = 1. (11)

The equilibrium conditions to define the insurer’s optimal decisions on the insurance premium

αe and the holding capital Ce differ in the market structure, that is captured by its market

pricing power η .

(i) In a monopolistic market where η = 1, the insurer sets the catastrophe insurance premium at

the maximum willingness to pay of each individual and holds the optimal capital such that

its marginal benefit is equal to its marginal cost:

α
∗ = α

∗(C∗,T ∗), (12)

F(x∗)
∂

∂C
α
∗(C∗,T ∗) = 1−F(x∗)+ r, (13)

where x∗ = 1
l (α

∗+C∗+K−M∗), α∗ ≡ αe(η = 1), C∗ ≡Ce(η = 1), T ∗ ≡ T e(η = 1), and

M∗ ≡ Me(η = 1). In Eq.(13), F(x∗) ∂

∂C α∗(C∗,T ∗) is the marginal increase in individuals’

maximum willingness to pay (or equivalently, the marginal increase in the monopolistic in-

surer’s premium income) with respect to capital. The right-hand side 1−F(x∗)+ r is the

marginal cost of capital (i.e., the marginal expected cost of losing all capital due to default

plus the marginal cost of carrying capital). The insurer’s expected profit is maximized when

the marginal benefit of capital is equal to its marginal cost.

(ii) In a perfectly competitive market where η = 0, the insurer, as a price taker, sells the catas-

trophe insurance at the market price αe(η = 0) = α̃ and determines its optimal capital such

that its expected profit is zero:∫ x∗∗

0
[α̃−M∗∗− xl + Ire(x)] f (x)dx− [1−F(x∗∗)]C∗∗− rC∗∗ = 0, (14)

where x∗∗ = 1
l (α̃ +C∗∗+K−M∗∗), C∗∗ ≡Ce(η = 0), and M∗∗ ≡Me(η = 0).

(iii) In markets with imperfect competition where 0 < η < 1, the insurer sets the catastrophe in-

surance premium αe(η) at the weighted sum of individuals’ maximum willingness to pay and

the exogenous market price and holds the optimal capital Ce(η) =Ce
premium(η)+Ce

quality(η)

such that:
α

e(η) = ηα
∗ (Ce(η),T e(η))+(1−η)α̃, (15)

ηF (x̂(η))
∂

∂C
α
∗ (Ce

premium(η),T e(η)
)
= 1−F (x̂(η))+ r, (16)
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∫ xe(η)

0
[αe(η)−Me(η)− xl + Ire(x)] f (x)dx− [1−F(xe(η))][Ce

premium(η)+Ce
quality(η)]

−r[Ce
premium(η)+Ce

quality(η)] = ηΠ
∗ (Me(η),T e(η)) ,

(17)

where x̂(η)= 1
l [α
∗(Ce

premium(η),T e(η))+Ce
premium(η)+K−Me(η)] and xe(η)= 1

l [α
e(η)+

Ce(η)+K−Me(η)]. The optimal capital Ce(η) consists of two components: (i) the premi-

um income capital Ce
premium(η) and (ii) the product quality capital Ce

product(η). As shown

in Eq.(16), the insurer holds the optimal premium income capital Ce
premium(η) such that the

marginal increase in its premium income equals to the marginal cost of capital, which opti-

mizes its expected profit without considering any competitive pressure on profit. As shown

in Eq.(17), the insurer holds the optimal product quality capital Ce
quality(η) in addition to

Ce
premium(η) such that its expected profit (i.e., the left hand side of Eq.(17)) meets the prof-

itability constraint.

The insurer’s optimal decisions with different market structures (i.e., in different market

pricing power η) are smoothed and inherently consistent. The product quality capital de-

creases to 0 without competitive pressure in a monopolistic market (i.e., Ce
quality(η = 1) = 0

and C∗ = Ce(η = 1) = Ce
premium(η = 1)) because the insurer has no incentive to pass the

benefits of government reinsurance to individuals but earns a maximized expected prof-

it Π∗(M∗,T ∗). The premium income capital decreases to 0 with perfect competition and

zero expected profit (i.e., Ce
premium(η = 0) = 0 and C∗∗ = Ce(η = 0) = Ce

quality(η = 0)) be-

cause holding more capital cannot increase premium income under competitive pressure (i.e.,

η
∂

∂C α∗
(

Ce
premium(η),T e

)
= 0 when η = 0). The insurer has to compete for customers by

product quality and thus holds maximal product quality capital.

(3) Given the optimal decisions of the government and the insurer, each individual purchases the

catastrophe insurance:
λ

e = 1. (18)

It is optimal for the insurer to insure all individuals because (i) all individuals are homoge-

neous, (ii) the per-policy expected profit is independent of the size of the insurance portfolio,

and (iii) the insurer earns a non-negative per-policy expected profit from any individual in-

sured. Therefore, the insurer would be willing to insure as many individuals as possible.

Given the above optimal decisions in the equilibrium, each individual ends up with a maxi-

mized expected utility Ue
i , the insurer earns an optimal expected profit Πe, and thus the maximized
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expected social utility is V e = Ue
i +Πe. In Appendix A4, we consider a more general expected

social utility function that weighted sums Ue
i and Πe. All our propositions hold.

Figure 3 illustrates an individual’s expected utility and the insurer’s expected profit in equilib-

riums under different market structures. In a perfectly competitive market (i.e., η = 0), the insurer

earns zero expected profit and each individual achieves the highest expected utility. As the market

becomes less competitive, the insurer with some market pricing power (i.e., 0 < η < 1) earns a

positive expected profit and each individual ends up with a lower expected utility. In a monopolis-

tic market (i.e., η = 1), the insurer earns the highest expected profit and each individual ends up

with the uninsured expected utility.

Figure 3: Government Reinsurance in Different Market Structures

Independent of the market structure, the government reinsurance (K,K,Me,T e) reallocates the

catastrophe risk between the insurer and the government. For any reinsurance product (K,K) that

satisfies the condition K+K ≤ xl,19 there exists a unique pair of Me and T e in the equilibrium. This

result suggests that the government reinsurance is applicable to a wide range of catastrophe risk

layers and therefore can be applied on various types of catastrophe risks with different distributions.

We derive the following three propositions by comparing the equilibrium of government rein-

surance with the NR and PR equilibriums. Proofs of propositions are presented in Appendix B.

19The condition implies that the insurer is always able to pay for the losses within its own retention, and its default
only occurs when the insured losses of a catastrophe event exceeds the upper limit of the reinsurance.
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Proposition 1. Existence of catastrophe insurance market

Both private and government reinsurance ensures that the insurer is always willing to enter the

catastrophe insurance market, while the market may not exist when there is no reinsurance:α∗n (C
e
n)< αn(C

e
n), iff δ > δ and r > r,

α∗n (C
e
n)≥ αn(C

e
n), if otherwise,

(19)

α
∗
p(C

e
p)> α p(C

e
p),∀δ and ∀ r, (20)

α
∗(Ce,T e)> α(Ce,Me),∀δ and ∀ r. (21)

The private catastrophe insurance market alone fails to exist, i.e., individuals’ maximum will-

ingness to pay is smaller than the insurer’s minimum acceptable premium, when the following two

conditions are jointly satisfied: (i) the risk correlation exceeds a certain threshold δ (δ > 0) and

(ii) the cost of capital exceeds a certain threshold r (r > 0). A high correlation among individual

risks results in a high default probability for the insurer to lose all its capital, and thus a low maxi-

mum willingness to pay and a higher minimum acceptable premium. A high cost of capital results

in a high minimum acceptable premium (recall that the minimum acceptable premium covers the

sum of expected loss and cost of capital). Proposition 1 suggests that the failure of the private

catastrophe insurance market, or more broadly the under-insurance of catastrophe risks, is a joint

result of the high risk correlation and the expensive capital cost. Existing literature explains the

failure in catastrophe insurance market with either risk correlation (Ibragimov et al., 2009; Kousky

and Cooke, 2012) or capital cost (Jaffee and Russell, 1997; Zanjani,2002), however, either reason

alone will not fail the catastrophe insurance market.20

Reinsurance, whether private or provided by the government, closes the gap between an indi-

vidual’s maximum willingness to pay and the insurer’s minimum acceptable premium, and thus

ensures the existence of the private catastrophe insurance market. Reinsurance acts the same

reducing-default-probability function as the holding capital for the catastrophe insurer but with

lower cost. When the insurer has some market pricing power (i.e., 0 < η ≤ 1), reinsurance substi-

tutes for holding capital, saves the capital cost, and thus lowers the minimum acceptable premium.

When the insurer faces some competitive pressure (i.e., 0≤ η < 1), reinsurance increases individ-

uals’ maximum willingness to pay by adding safety buffers on top of the insurer’s capital.

20In a multi-period setup, the inter-temporal correlation of catastrophe losses may result in the failure of private
insurance market even with reinsurance (see Section 5.2 for details).
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Proposition 2. Improvement in expected social utility

Government reinsurance improves the expected social utility compared to the NR and PR cases:

V e
n <V e

p <V e. (22)

Government reinsurance achieves Pareto improvement comparing to the NR and PR cases in some

more competitive catastrophe insurance markets; government reinsurance reduces individuals’

expected utility in some less competitive markets:Ue
in <Ue

ip ≤Ue
i and Πe

n ≤Πe
p ≤Πe, when 0≤ η ≤ η ,

Ue
in ≤Ue

ip >Ue
i and Πe

n < Πe
p < Πe, when η < η ≤ 1.

(23)

As shown in Proposition 2 and Figure 3, private reinsurance achieves Pareto improvement

compared to no reinsurance. In a monopolistic market, reinsurance acts a one-to-one substitute for

holding capital, and therefore saves the insurer’s cost of capital and improves its expected profit.

As the market becomes more and more competitive, the competitive pressure limits the insurer’s

profitability. The insurer cannot use reinsurance to only substitute its holding capital but also to

add some safety buffer on top of its holding capital, which improves both the insurer’s expected

profit and individuals’ expected utilities. In a perfectly competitive market, the insurer expected

profit is always zero, and reinsurance cannot replace capital but adds safety buffer, improves the

product quality, and improves individuals’ expected utilities.

Next, we compare the government reinsurance with the private reinsurance. By balancing

between catastrophe tax and reinsurance premium, the government achieves the optimal balance

between individuals’ expected utilities and the insurer’s expected profit, and therefore further im-

prove the expected social utility V e
p <V e. However, this improvement is at the expense of a catas-

trophe tax that reduces individuals’ expected utilities when competition is insufficient. In practice,

a catastrophe risk market often features low competition (Emons, 2001; Zanjani, 2002). As shown

in Figure 3, both individuals and the insurer can improve their expected utilities and expected profit

with government reinsurance in some more competitive markets where 0 ≤ η ≤ η , thus achiev-

ing Pareto improvement. The improvement in expected social utility comes from two channels:

the product quality-individual utility channel and the capital cost-insurer profit channel, which are

analyzed in detail in Section 4.1.

Proposition 3. The insurer’s default probability

Government reinsurance decreases the insurer’s default probability compared to the NR and PR
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cases in some more competitive markets; government reinsurance may increase or decrease the

insurer’s default probability in some less competitive markets:xe
n < xe

p < xe, when 0≤ η < η̃ ,

xe
n ≤ xe

p ≶ xe, when η̃ ≤ η ≤ 1.
(24)

Private reinsurance decreases the insurer’s default probability (i.e., increases the insurer’s de-

fault threshold) compared to no reinsurance. As shown in Eq.(4), the default threshold is de-

termined by the sum of the insurer’s premium income, holding capital, and the net coverage of

reinsurance. In a monopolistic market where η = 1, reinsurance acts as a one-to-one substitute for

the insurer’s capital and thus changes neither the sum of the holding capital and net reinsurance

coverage nor individuals’ maximum willingness to pay (i.e., the monopolistic insurer’s premium

income). Thus, its default threshold is the same as that in the NR case. In a competitive market

where 0≤ η < 1, reinsurance not only substitutes the insurer’s holding capital but also adds some

safety buffer on top of the capital, which increases the sum of the holding capital and net reinsur-

ance coverage, and increases individuals’ maximum willingness to pay that partially becomes the

insurer’s premium income in markets with imperfect competition.

Compared to private reinsurance, government reinsurance further increases the insurer’s prod-

uct quality capital Cquality and thus decreases its default probability through the product quality

channel. However, government reinsurance also decreases the insurer’s premium income capital

Cpremium and thus increases its default probability through the capital cost channel. We discuss

the details of these two channels in Section 4.1. There is also some wealth transfer effect that the

catastrophe tax increases individuals’ maximum willing to pay and, hence, the insurer’s premium

income when the insurer has some pricing power (0 < η ≤ 1). The increased premium income

further decreases the insurer’s default probability.

In some more competitive markets where 0≤ η < η̃ , the capital cost channel is weak and thus

the government reinsurance decreases the insurer’s default probability, driven by the aggregate im-

pact of the product quality channel and the wealth transfer effect. In some less competitive markets

where η̃ ≤ η ≤ 1, the product quality channel is weak and the impact of government reinsurance

on the insurer’s default probability is driven by the opposite effect of the capital cost channel and

the wealth transfer effect. Their aggregate impact is thus undetermined, depending on the degree of

individuals’ risk aversion. With increasing absolute risk aversion (IARA), individuals have lower
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insurance demand for large-loss events (Zhou et al., 2010), i.e., lower maximum willingness to pay

and thus lower premium income for the insurer. Thus, the wealth transfer effect is weak, the capi-

tal cost channel dominates the increase in the insurer’s default probability. On the contrary, when

individuals exhibit decreasing or constant absolute risk aversion (DARA or CARA), the impact of

the wealth transfer effect (and the weakened product quality channel) dominates the capital cost

channel and thus government reinsurance decreases the insurer’s default probability.

In practice, a catastrophe risk market often features low competition (Emons, 2001; Zanjani,

2002) and IARA individuals (Gollier, 1997). Individuals are used to underestimate catastrophe

risks (Froot, 2001; Kunreuther, 2015) and thus are less risk averse for large-loss events, implying

an IARA preference (Zhou et al., 2010). Thus, in a catastrophe risk market, it is likely that the

government reinsurance introduces a tradeoff between an improved expected social utility, and (i)

an increase in the insurer’s default probability and (ii) an decrease in individuals’ expected utilities

(see Proposition 2). To avoid this dilemma, competition in the private catastrophe insurance market

should be encouraged, which, according to Propositions 2 and 3, mitigates the potential problems

of the government reinsurance.

4. Impact Channels and Pricing of Government Reinsurance

4.1. Impact Channels

Figure 4 shows that the government reinsurance and the tradeoff between catastrophe tax and

reinsurance premium improve expected social utility through the product quality and the capital

cost channels, compared to private reinsurance. The impact of these two channels is, however, op-

posite on the insurer’s default probability. This pair of channels works on different components of

the insurer’s holding capital: product quality capital Cquality and premium income capital Cpremium.

Figure 4: Impact Channels of Government Reinsurance
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The strengths of the two channels vary, depending on the market structure. The product quality

channel is stronger when the market is more competitive, while the capital cost channel is stronger

when the market is close to monopoly. In markets with imperfect competition, both channels co-

exist. In a monopoly market where the insurer is a price maker, the product quality channel shuts

down as Ce
quality,p(η = 0) =Ce

quality(η = 0) = 0; in a perfectly competitive market where the insurer

is a price taker, the capital cost channel shuts down as Ce
premium,p(η = 1) =Ce

premium(η = 1) = 0.21

We formalize the two channels and present their intuitions as follows.22 The proofs of the two

channels are provided in Appendices C1 and C2.

Channel 1. Product Quality Channel

Government reinsurance raises the insurer’s product quality capital compared to private reinsur-

ance, and strictly so when the catastrophe insurance market is not monopolistic:Ce
quality,p(η)<Ce

quality(η), when 0≤ η < 1,

Ce
quality,p(η) =Ce

quality(η) = 0, when η = 1.
(25)

The product quality channel works on the insurer’s product quality capital to improve the ex-

pected social utility and to decrease the insurer’s default probability. The catastrophe tax subsidizes

the insurer’s reinsurance premium. The saved premium of reinsurance can be used to support the

insurer to hold more product quality capital. Additional product quality capital reduces the insur-

er’s default probability and delivers a safer (higher quality) product to individuals, which increases

individuals’ expected utilities and, hence, the social welfare. As the market becomes more and

more competitive, the insurer passes a larger fraction of its benefits from the catastrophe tax sub-

sidy to individuals by holding more product quality capital. In the two extreme market structures,

monopoly imposes no pressure on the insurer to share its benefits (i.e., the product quality channel

shuts down); perfect competition forces the insurer to pass all its benefits to individuals (i.e., a

maximum capital cost channel).

Channel 2. Capital Cost Channel

Government reinsurance reduces the insurer’s premium income capital compared to private rein-

21Ce
quality,p(η) and Ce

premium,p(η) are the insurer’s product quality capital and premium income capital in the PR
equilibrium, respectively.

22Although the wealth transfer impact of tax on expected social utility is undetermined, depending on individuals’
initial wealth and on their degree of risk averse, it is always dominated by the product quality and premium income
channels and thus cannot change the impact direction on expected social utility.
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surance, and strictly so when the catastrophe insurance market is not perfectly competitive:Ce
premium,p(η)>Ce

premium(η), when 0 < η ≤ 1,

Ce
premium,p(η) =Ce

premium(η) = 0, when η = 0.
(26)

The capital cost channel works on the insurer’s premium income capital to improve the social

welfare and to increase the insurer’s default probability. The catastrophe tax increases individuals’

maximum willingness to pay, (part of) which becomes the insurer’s premium income when the in-

surer has some market pricing power, and thus offsets the insurer’s incentive to hold more premium

income capital. The decreased premium income capital increases the insurer’s default probability

but saves the insurer’s cost of capital, increases the insurer’s expected profit and, hence, the social

welfare. As the market becomes less and less competitive, the insurer has more market pricing

power (i.e., more like a price maker than a price taker) and thus is more capable of exploiting indi-

viduals’ maximum willingness to pay and holds less premium income capital. In the two extreme

market structures, perfect competition does not allow the insurer to price or to share any incre-

ments in individuals’ maximum willingness to pay (i.e., the capital cost channel shuts down) and

monopoly enables the insurer to take all the increments (i.e., a maximum capital cost channel).

4.2. Pricing of Government Reinsurance

In this section, we show that the pricing of government reinsurance is risk based, affordable,

and long-term sustainable. Proofs of properties of pricing of government reinsurance are presented

in Appendix C3. The government reinsurance price comprises two components: the catastrophe

tax T and the reinsurance premium M. As shown in Eq.(9), the reinsurance price is risk-based and

equals to the expected reinsurance loss given a set of exogenous reinsurance coverage (K,K). The

price is higher with a lower retention K, a larger coverage K, and/or a greater potential loss l.

∂ (Me +T e)

∂K
< 0,

∂ (Me +T e)

∂K
> 0,

∂ (Me +T e)

∂ l
> 0. (27)

The government reinsurance is affordable for the private catastrophe insurer as the reinsurance

premium is always lower than the primary insurance premium, i.e., Me < αe. This is because

(i) the reinsurance premium is less than the expected reinsurance loss given the catastrophe tax

subsidy; (ii) the primary premium is higher than the expected loss of catastrophe insurance as

individuals are risk averse and willing to pay more than fair price for the catastrophe coverage; (iii)

the reinsurance covers a part of the risk under the primary insurance.
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To analyze the sustainability of the government reinsurance program, we repeat the single-

period game over time: In each period, a share of individuals xt (xt is independent across periods)

suffers a loss l with probability p. Individuals, the insurer, and the government repeat the same

decision process as shown in Figure 1. The government’s budget and sustainability constraint (i.e.,

the actuarial fair condition) remains binding in each period based on the expected loss. Therefore,

the government reinsurance is sustainable and break-even in the long run, given a large number

of individuals and according to the Law of Large Numbers. The government reinsurance program

accumulates reserves from catastrophe taxes and reinsurance premiums before a catastrophe event

occurs and covers the catastrophe losses using the reserves and premiums once the catastrophe

hits. When the accumulated reserves cannot cover the loss in full, a private reinsurer may thus

be at the risk of bankruptcy, whereas a sovereign government is able to inter-temporally smooth

the volatilities with its non-bankruptcy nature by borrowing from other public or private sources.

The government reinsurance program can repay the loans with catastrophe taxes and reinsurance

premiums in subsequent periods. The government reinsurance program is thus self-sustainable.

The government reinsurance program remains sustainable if certain costs are loaded on the

actuarially fair reinsurance premium, i.e., T ′+M′ = (1+ r′)E[Ire(x)] (r′ > 0). All our propositions

and channels hold as long as (i) the rate of cost loadings is not excessively high such that the cost

of government reinsurance is less than the capital cost saved by the reinsurance, i.e., r′E[Ire(x)]<

r(K− (M′+T ′)) and the rate of cost loading is less than the capital cost threshold of the market

failure, i.e., r′ < r, and (ii) private reinsurance has the same rate of cost loadings, i.e., M′p =

(1+ r′)E[Ire(x)].

The cost loading extension can also be used to analyze the returns of reserve investments and

the interest rate for inter-temporal loans of the government reinsurance program. When the invest-

ment return rate is lower than (equal to) the loan interest rate, it is equivalent to r′ > 0 (r′ = 0) and

our conclusions hold with the above conditions. When the investment return rate is higher than the

loan interest rate, the government reinsurance earns a surplus and thus can offer reinsurance with

a lower price, which further improves the social welfare.

5. Application to the COVID-19 Pandemic

In this section, we extend and apply the model to analyze the risks of COVID-19 and future

pandemics, and their corresponding (re)insurance solutions. We connect our catastrophe risk mod-
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el with the classical SIR model in the public health literature and calibrate it in the context of

COVID-19. We extend the model to capture the inter-temporal correlation of of the losses from

COVID-19 and other pandemics, which is one of the key differences between pandemics and many

natural catastrophes. Last but not least, we compare two government backed (re)insurance solu-

tions for pandemic-caused business interruptions: the Pandemic Risk Insurance Act (PRIA) versus

the Business Continuity Protection Program (BCPP).

5.1. Calibration with the COVID-19 Pandemic

The COVID-19 and other pandemics are a type of catastrophe risk because most individuals in

modern society are exposed to the risk of infection and the individual risks are highly correlated

due to the communicable nature of an epidemic. As a result, the aggregate losses of the COVID-

19 exceed those of many natural catastrophes, in particular due to large medical expenses and

mass business interruptions, which challenge the financial flexibility and solvency of insurers and

reinsurers (Swiss Re, 2020).

To analyze the performance of government reinsurance in a COVID-19 type of pandemic

risk environment, we connect our catastrophe risk model with the Susceptible-Infected-Recovered

(SIR) model that is widely used in the epidemiology and public health literature. The basic re-

production number R0 in an SIR model captures the number of secondary cases, which one case

would produce in a completely susceptible population. R0 is widely used to capture the severity

of a communicable disease (see e.g., Gollier, 2020; Pindyck, 2020). The relationship between the

basic reproduction number R0 and the cumulative infection rate pp can be expressed as follows

(Kermack and Mekendrick, 1927; Pindyck, 2020):

−ln(1− pp) = R0 pp. (28)

Following Charpentier and Le Maux (2014), the correlation of individual risks δ in our catas-

trophe risk model can be further specified as δ = 1− pN
pC

, where pN is the probability that an

individual claims a loss without a catastrophe/pandemic and pC is the probability that an individ-

ual claims a loss given that a catastrophe/pandemic occurs. In the context of pandemic risks and

health insurance markets, additional health insurance claims caused by a pandemic can be captured

by the cumulative infection rate pp. Thus, the probability that an individual claims a loss given a

pandemic is the sum of the baseline claim rate and the cumulative infection rate of the pandemic,
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i.e., pC = pN + pp.23 Therefore, the relationship between the correlation of individual risks δ and

the cumulative infection rate of a pandemic pp can be derived as follows. It is easy to see that pp

and δ are positively correlated and δ → 0 as pp→ 0.

δ = 1− pN

pN + pp
. (29)

We thus derive the relationship between the basic reproduction number R0 in a SIR model and

the risk correlation δ in our catastrophe risk model as follows. We see that R0 and δ are positively

correlated and δ → 0 as R0→ 1.

−ln
(

1− pN

1−δ
+ pN

)
= R0

(
pN

1−δ
− pN

)
. (30)

Next, we parameterize the COVID-19 pandemic by R0 and pp to calibrate the model and to

quantify the impact of COVID-19 and its (re)insurance solutions on social welfare. The model

parameters based on various COVID-19 scenarios are presented in Table 1. The loss l of each in-

dividual is normalized to 1. Therefore, the maximum losses to the unit mass of individuals follows

l = 1 as we normalize the population to 1. We adopt Charpentier and Le Maux’s (2014) risk distri-

bution function F(x) = ∑
b1000xc
j=0

(1000
j

)[
0.9p j

N(1− pN)
1000− j +0.1p j

C(1− pC)
1000− j

]
24 and their

exponential utility function U(Y ) = 1− e(−0.6Y ) for each individual exposed to the pandemic risk.

We consider a monopolistic pandemic insurance market where η = 1 because pandemic risks “are

too widespread, too severe, and too unpredictable for the insurance industry to underwrite” (AP-

CIA et al., 2020) and few (re)insurers can offer private pandemic insurance (Munich Re, 2020).

Alternatively, we report the results in Appendix D1 with η=0.75, 0.5, and 0.25, which are con-

sistent with our main results. The cumulative infection rate pp of COVID-19 ranges in (0%,70%)

based on the reported statistics in different regions as of November 15, 2020 and the estimated

results in the literature.

23We assume that (i) all COVID-19 infected individuals with health insurance will claim a loss, (ii) the distribution
of the cumulative infection rate is independent of health coverage, and (iii) there is no overlap between individuals
claiming a loss without a pandemic and individuals infected by the pandemic. Our conclusions remain intact if the
above assumptions are violated, but this would cause the simulation process to become cumbersome.

24In the context of a pandemic-catastrophe risk, x is the share of the population claiming a loss, which includes the
COVID-19 infected individuals and individuals claiming for other diseases.
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Table 1: Calibrated Parameters

Parameter Definition/Location Value Source

η

The insurer’s market pricing
power (inverse measure of
market competition)

1 Charpentier and Le Maux (2014)

r Unit cost of capital 0.05 Zanjani (2002)

K
The insurer’s retention of CAT
XL reinsurance

0.1 10% of the loss l

K
Coverage of CAT XL reinsur-
ance

0.2 20% of the loss l

pN

Probability that an individual
claims a loss without a pan-
demic (baseline claim rate)

10%
Baseline claim rate of health insurance
with a high deductible

pp

Worldwide (Nov. 15, 2020) 0.7% WHO (2020)
Germany (Nov. 15, 2020) 0.9% WHO (2020)
Italy (Nov. 15, 2020) 1.9% WHO (2020)
U.S. (Nov. 15, 2020) 3.2% WHO (2020)
Andorra (Nov. 15, 2020) 7.4% WHO (2020)
North Dakota (Nov. 15, 2020) 8.5% CDC (2020)
New York (estimated) 26% Fernández-Villaverde and Jone (2020)
Worldwide (Spanish Flu) 33% Taubenberger and Morens (2006)
Worldwide (estimated) 40%-70% CBS (2020)
Italy (estimated) 47.1% Manski and Molonari (2020)
Illinois (estimated) 52.2% Manski and Molonari (2020)
U.S. (estimated) 58% Pindyck (2020)

Figures 5(a) through 5(c) show that the expected social utility decreases as the basic reproduc-

tion number, the cumulative infection rate, and the individual risk correlation increase. In other

words, social welfare decreases as the COVID-19 pandemic spreads. Government reinsurance

improves the expected social utility compared to the cases with no reinsurance and private rein-

surance, and this improvement becomes more prominent as the pandemic spreads. However, the

efficiency gains from government reinsurance are insufficient to compensate the welfare losses

when the pandemic becomes massively widespread. In particular, as shown in Figure 5(c), the

expected social utility drops sharply when the individual risk correlation δ exceeds 0.7 or, equiv-

alently, when the cumulative infection rate pp exceeds 25%. Compared to the Spanish Flu with

pp = 33% (Taubenberger and Morens, 2006), the COVID-19 is estimated to be a greater pandem-

ic, infecting 40%-70% of the world population (CBS, 2020). The results strongly suggest that any

pandemic risk-sharing solutions, including government or private reinsurance, should be coupled

with social distancing and other public health measures to control the spread of the pandemic.
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Figure 5: COVID-19, Expected Social Utility, and Individual’s Expected Utility

Note:In Figure 5(a), the basic reproduction number R0 is assumed to be constant in our calibration and its range
matches the range of the cumulative infection rate pp. The R0 might be smaller than some estimated R0 based on certain
pandemic-outbreak time periods and policy circumstances (e.g., R0=1.6, 1.8, 2.0, 2.2, 2.5, 2.8, and 3.0 in Atkeson,
2020). We refer to Gollier (2020) for analyses on policy-sensitive and time-variant basic reproduction numbers. In
Figure 5(d), curves for no reinsurance and private reinsurance coincide because individuals end up with the expected
utility of not buying pandemic insurance pU(−l) in a monopolistic market in both cases.

Figure 5(d) shows that individuals’ expected utilities decreases as the correlation among in-

dividual risks increases in a monopolistic insurance market. Government reinsurance further de-

creases individuals’ expected utilities compared to the cases with no reinsurance and private rein-

surance. In other words, the improvement in social welfare with government reinsurance comes

with the expense in individuals’ expected utilities. Therefore, anti-monopoly and/or price regula-
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tion policies should always be coupled with the government pandemic reinsurance to balance the

interests of individuals and insurers and to achieve a Pareto improvement.

5.2. Inter-temporal Correlation of Pandemic Losses

As we have learned from the COVID-19 pandemic, one of the major differences between a

pandemic and many natural catastrophes is that the pandemic losses are correlated inter-temporally.

The losses caused by a hurricane in one period are usually independent of the hurricane losses in

the next period. However, the losses caused by a pandemic in one period are positively correlated

with the pandemic losses in the following period because a pandemic spreads more quickly and

widely as the number of infected individuals increases. In other words, a pandemic persists and

becomes harder to eliminate once it breaks out.

To capture the inter-temporal correlation of pandemic losses, we extend the model to two pe-

riods in the context of business interruption insurance. In each period, a unit mass of businesses,

the private insurer, and the government repeat the decision process in Figure 1. Each business also

decides whether to open or close in addition to its insurance purchasing decision. The potential

losses of business interruption due to a pandemic are realized after all decisions are made.

Business interruption insurance covers the loss of profits triggered by an insured event. A

standard business interruption policy usually excludes communicable diseases, but these can be

covered via an extension with an additional premium (Hartwig et al., 2020). Private reinsurers have

developed risk transfer solutions for epidemic-caused business interruptions, delays in start-up, and

temporary site closures in order to support private insurers’ ability to offer communicable disease

coverage. “The idea is fairly simple—and actually not too far removed from our expertise in

risk managing natural disasters” (Munich Re, 2020). The communicable disease extension covers

business interruption losses due to an epidemic/pandemic but does not cover business closings

that occur for a purely precautionary purpose because physical losses are required to trigger the

indemnity.25 Our two-period model incorporates the above business interruption policy, including

its communicable disease extension and refers to it as “pandemic insurance”.

Recall that in the single-period game, the losses to the unit mass of businesses are xl where x∼

F(x|p,δ ). The expected losses of the businesses are E(x)l = pl. Figure 6(a) models a catastrophe

25Since the COVID-19 breakout, eight state courts in the U.S. have concluded that COVID-related business loss-
es constitute physical loss and thus should be covered by business interruption insurance despite virus exclusions
(Reuters, 2020).
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risk without considering the inter-temporal correlation of catastrophe losses: the expected loss

in each period is pl when the businesses decide to open and l when they close proactively. The

expected losses are thus independent of catastrophe events in the previous period. Figure 6(b)

allows the expected loss in a period to be dependent on catastrophe events in the previous period.

Thus, given a catastrophe event in the previous period, the expected loss of businesses in period 1

is ql (p≤ q < 1) when they decide to open and l when they close proactively.

The two-period setup allows us to introduce the tradeoff between economic development (open

business) and the spread of the pandemic. Opening businesses during a pandemic will cause the

pandemic to continue in the next period while closing them will stop it. Therefore, the expected

losses in period 2 are [q2 +(1−q)p]l when the businesses decide to remain open in period 1 and

period 2; pl when the businesses decide to close in period 1 and open in period 2 (because the

pandemic came under control due to business closure in period 1); l when the businesses close

proactively in period 2. Thus, q− p captures the inter-temporal correlation of pandemic losses,

i.e., a larger q− p implies higher inter-temporal correlation and q = p implies no inter-temporal

correlation.

Figure 6: Two-period Model

We derive the equilibrium and policy implications of the extended two-period model in the

following four corollaries. The proofs are provided in Appendix D2.

Corollary 1.1. The equilibrium

In period 1, businesses choose to remain open and buy pandemic insurance when the inter-

temporal correlation of pandemic losses is small (i.e., p ≤ q ≤ q̂); businesses choose to close

and do not buy pandemic insurance when the inter-temporal correlation is large (i.e., q̂ < q≤ 1).

In period 2, businesses choose to open and buy pandemic insurance.
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The intuition is as follows. If businesses close proactively in period 1, they will not buy pan-

demic insurance since the insurance does not cover losses due to proactive closure. Businesses

have to bear the loss l themselves and have a low period-1 expected utility. As a tradeoff, the

closure stops the spread of the pandemic, reduces the insurance premium in period 2, and thus

results in a higher expected utility in period 2. If businesses choose to open in period 1, they will

buy pandemic insurance, as we show in the equilibrium of the single-period model. The deci-

sion to remain open aggravates the pandemic, increases the insurance premium in period 2, and

reduces the expected utility in period 2. A tradeoff thus exists between the expected utilities of

the two periods. When the inter-temporal correlation is low, opening would have little effect on

the spread of the pandemic and hence there would be a small decrease in period-2 expected utility

but a large improvement in period-1 expected utility. Therefore, it is optimal for businesses to

open in period 1 when the inter-temporal correlation is below a certain threshold, i.e., p ≤ q ≤ q̂.

When the inter-temporal correlation exceeds the threshold, i.e., q̂ < q ≤ 1, it is optimal to close

businesses proactively in period 1. In period 2, businesses consider the current-period expected

utility only. Compared to closing the business and bearing the loss l themselves, it is always better

for businesses to open and share the losses with the insurer by buying pandemic insurance.26

Corollary 1.1 suggests that neither private nor government reinsurance solve the market failure

problem of pandemic insurance when the inter-temporal correlation is excessively high. Therefore,

business lockdown policies are expected to keep the inter-temporal correlation of pandemic losses

lower than the market failure threshold and are critical to the viability of any pandemic risk transfer

solutions.

Corollary 1.2. Existence of pandemic insurance market

In a pandemic insurance market with low competition, both private and government reinsurance

improves the viability of pandemic insurance compared to the case of no reinsurance; however,

government reinsurance can be less effective than private reinsurance:

∂ q̂p

∂K
> 0,

∂ q̂
∂K

> 0, and q̂p > q̂, when ή < η ≤ 1. (31)

The intuition is as follows. In less competitive markets where ή < η ≤ 1, reinsurance mainly

26Our results are expected to hold if we extend the model from two-period to multi-period. Businesses are more
willing to close proactively in the early periods since they care more about their future expected utility and remain
open in the late periods since the future expected utility becomes less important.
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acts as a substitute for the insurer’s capital and the saved capital cost reduces the insurer’s mini-

mum acceptable premium. The maximum willingness to pay makes businesses indifferent to two

paths in the equilibrium: (i) open and buy insurance in period 1 and remain open in period 2; (ii)

close in period 1 and open in period 2. Reinsurance improves the quality of pandemic insurance

in both periods and thus increases the expected utilities of businesses on both paths. It is thus

undetermined whether the maximum willingness to pay of businesses with reinsurance rises or

not, compared to that without reinsurance. Therefore, the reduction in the minimum acceptable

premium dominates and reinsurance narrows the gap between the minimum acceptable premium

and the maximum willingness to pay compared to the case of no reinsurance. As a result, a larger

reinsurance coverage K leads to a higher upper bound of inter-temporal correlation for the market

existence in period 1. In other words, businesses are more likely to open in period 1. Corollary

1.2 suggests that, given any level of correlation among individual risks δ , reinsurance encourages

businesses to open, i.e., the economy is more likely to keep running with pandemic reinsurance.27

Next, we compare the effects of government reinsurance and private reinsurance on the viabil-

ity of the pandemic insurance market. In less competitive markets where ή < η ≤ 1, the positive

pandemic tax of government reinsurance decreases the expected utilities of businesses. If busi-

nesses open and buy the insurance in both periods, they have to pay the pandemic tax in both

periods and thus face a greater reduction in expected utilities compared to closing in period 1 and

reopening in period 2, where the pandemic tax does not exist in period 1 as the pandemic insurance

market does not exist. Thus, opening in both periods is less attractive with government reinsurance

than that with private reinsurance. In other words, businesses are less likely to open in period 1

with government reinsurance than with private reinsurance.28

Corollary 1.3. Improvement in expected social utility

Government reinsurance improves the expected social utility compared to the cases of no reinsur-

ance and private reinsurance:

V e
qn <V e

qp <V e
q . (32)

27In more competitive markets, reinsurance mainly plays the role of a safety buffer rather than saving the cost
of capital and thus has a small impact on the insurer’s minimum acceptable premium. Thus, it is undetermined
whether a larger reinsurance coverage K increases or decreases the upper bound of inter-temporal correlation for
market existence, i.e., ∂ q̂p

∂K ≶ 0 and ∂ q̂
∂K ≶ 0 when 0≤ η ≤ ή .

28In more competitive markets, the impact of pandemic tax on businesses’ expected utility is undetermined between
opening for two periods and closing in period 1, i.e., q̂p ≶ q̂ when 0≤ η ≤ ή .
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The intuition is as follows. The inter-temporal correlation of pandemic losses does not affect

the function of reinsurance—substituting for the insurer’s holding capital at a lower cost. Thus,

private reinsurance improves the expected social utility compared to no reinsurance. The inter-

temporal correlation also does not affect the government’s balance between catastrophe/pandemic

taxes and reinsurance premiums to achieve the optimal expected social utility. Thus, as in Propo-

sition 2, government reinsurance further improves the expected social utility compared to private

reinsurance.

In reality, it is difficult for the insurer to distinguish business closure for precautionary purpose

from that forced by the pandemic. Therefore, a moral hazard problem may arise when businesses

can hide their intention of closure to maximize their inter-temporal expected utilities. To analyze

this moral hazard problem, we consider the case that pandemic insurance indemnifies all losses

caused by business closure.

Corollary 1.4. Moral hazard problem

The viability of pandemic insurance is reduced, when the purpose of business closure is unobserv-

able:
q̂mh < q̂. (33)

The intuition is as follows. With the moral hazard problem, the expected utility of businesses

to close in period 1 increases because businesses can claim their losses from pandemic insurance

regardless the real purpose of the close. Anticipating this moral hazard problem, the minimum

acceptable premium of the insurer will increase. Given that businesses’ maximum willingness to

pay is unchanged, the market becomes harder to exist with moral hazard than without it.

5.3. Government-backed (Re)insurance Solutions for COVID-19 and Future Pandemics

Private pandemic risk protection remains largely unavailable in the market because pandemics

are inherently uninsurable; “they are too widespread, too severe, and too unpredictable for the

insurance industry to underwrite”(APCIA et al., 2020). Therefore, the insurance industry and

some House Representatives are calling for public-private risk-sharing solutions to offer pandemic

(re)insurance. PRIA and BCPP are two prominent and competing pandemic (re)insurance solutions

under discussion in the U.S.. Both of them aim to support the pandemic risk transfer for business

interruptions. One major difference between them is that PRIA proposes to establish a government

reinsurance program and BCPP is a type of government-provided insurance. Our catastrophe risk-

sharing model can thus be helpful to predict and to compare the outcomes of PRIA and BCPP.
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PRIA was published the first draft on April 3, 2020, and proposed by Representative Carolyn

Maloney and more than 20 co-sponsors on May 22 and 26 to the House and referred to the House

Committee of Financial Services. PRIA proposes to establish a Pandemic Risk Reinsurance Pro-

gram (PRRP hereafter) within the Department of the Treasury, under which private insurers and

the federal government share the responsibility to pay claims for covered business interruption

losses. Private insurers can voluntarily participate and participants are required to cover defined

public health emergencies such as COVID-19 under their business interruption policies. To trigger

the PRRP obligation, the aggregate industry insured losses should exceed $250 million. Once the

PRRP has been triggered and participating insurers have paid the retention as 5% of their direct

earned premiums during the preceding calendar year, the PRRP would pay 95% of the insured

losses that exceed the insurer’s retention. The total reinsurance coverage of PRRP is $750 billion

based on the aggregate industry insured losses. PRIA is a government reinsurance program for

pandemic risk-sharing that features public-private partnership.

The funding source of PRIA (PRRP) remains under discussion. In the version of April 3, PRIA

requires the Treasury to charge a reinsurance premium to participating insurers (Maloney, 2020).

The versions of May 22 and 26 strike this language and imply that funding will come from the

taxpayers (Dawson, 2020; Maloney, 2020). Our model results suggest that there exists an optimal

balance between the use of reinsurance premiums and of a catastrophe tax to fund a government

reinsurance program. The premium-tax tradeoff raises individuals’ demand for catastrophe insur-

ance (with higher maximum willingness to pay) and makes the catastrophe risk-sharing market

more effective (with higher catastrophe insurance product quality) as well as more efficient (with

lower catastrophe insurance capital cost). We thus argue that PRIA should take advantage of this

premium-tax tradeoff and adopt a mix of funding from participating insurers and taxpayers.

BCPP was proposed by three insurance industry trade groups, APCIA, NAMIC, and the Big

“I” on May 21, 2020. It is a federal pandemic insurance for business interruption run by the

Federal Emergency Management Agency (FEMA). Businesses can participate in the BCPP by

purchasing federal revenue replacement assistance through a state-regulated insurance agent or

carrier (as a sales agent). Premiums charged by BCPP is calculated as a percentage of the payroll

of each business and applicable expenses for replacement. Businesses are allowed to choose a

desired level of protection for three months’ relief for up to 80% of payroll, employee benefits, and

operating expenses. Once a federally declared public health emergency occurs, businesses would
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receive the federal revenue replacement assistance from FEMA. BCPP is a government insurance

program fully funded by taxpayers and it is expected to fill the gap in the private insurance market.

Under PRIA, businesses decide whether to purchase pandemic insurance; the private insurer

decides whether to participate in the PRRP, holds capital CPRIA, and sets the pandemic insurance

premium αPRIA given that the market is not perfectly competitive. The PRRP collects the reinsur-

ance premium MPRIA from the private insurer and also funds the program with the tax subsidies

TPRIA to maximize the expected social utility VPRIA, which is equal to the sum of businesses’ ex-

pected utilities and the insurer’s expected profit. The PRIA equilibrium is thus the same as the

government reinsurance equilibrium.

BCPP, as a government insurance, can be seen as a degenerated government reinsurance case

with K = 0, K = l, and M = α . Under BCPP, FEMA determines the price of pandemic insurance

αBCPP to maximize the expected social utility VBCPP, which is businesses’ expected utilities as the

private market of pandemic insurance is negligible due to uninsurability. The budget constraint is

αBCPP ≥ pl. All businesses decide simultaneously whether to buy the insurance from BCPP. In the

BCPP equilibrium, we can prove that the budget constraint is binding and the insurance price is

equal to the expected loss, αe
BCPP = pl, and all businesses decide to buy pandemic insurance.

For the purpose of comparison, we assume that PRIA and BCPP have the same scope of cover-

age l and relax it afterwards. We derive the following four corollaries and the corresponding proofs

are presented in Appendix D3.

Corollary 2.1. Both PRIA and BCPP ensure the viability of pandemic risk transfer:

α
∗
PRIA(C

e
PRIA,T

e
PRIA)> αPRIA(C

e
PRIA,M

e
PRIA), (34)

α
∗
BCPP > αBCPP. (35)

Both programs close the gap between the minimum acceptable premium of pandemic insur-

ance and businesses’ maximum willingness to pay. PRIA, as a government reinsurance program,

ensures the existence of a private pandemic insurance market, according to Proposition 1. BCPP

directly offers pandemic insurance at a fair price and therefore also ensures the viability of pan-

demic risk transfer.

Corollary 2.2. PRIA is more efficient than BCPP in terms of expected social utility in a pandemic
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insurance market with low competition:

V e
PRIA >V e

BCPP, when η̂ < η ≤ 1. (36)

The intuition is as follows. The private insurer will have a positive expected profit with PRIA

given that the private insurance market is not perfectly competitive; the private insurer will not par-

ticipate in the pandemic insurance market and earns zero profit with BCPP. Businesses are always

better off with BCPP, because it offers a zero-default insurance at a fair price. The comparison of

expected social utility thus depends on the weight of the insurer’s expected profit in the expected

social utility with PRIA V e
PRIA. When the private pandemic insurance market in the PRIA case

is less competitive, the insurer’s expected profit is high and thus drives the expected social utility

with PRIA higher than that with BCPP.29

A government (re)insurance program faces a budget deficit when the covered losses exceed

the program’s accumulated reserves in a particular year t. The government has to borrow from

other public or private financial resources though it can repay the loans with the program in-

come in later periods. In period t, the probability of a budget deficit can be defined as DPe
PRIA ≡

Prob
(
Ire(xt)> t(Me

PRIA +T e
PRIA)−∑

t−1
i=1 Ire(xi)

)
and DPe

BCPP≡Prob
(
xt l > tαe

BCPP−∑
t−1
i=1 xil

)
, i.e.,

the probability that the covered losses exceed the accumulated reserves. The severity of a bud-

get deficit is measured by the gap between the covered losses and the accumulated reserves, i.e.,

DSe
PRIA ≡ Ire(xt)−

[
t(Me

PRIA +T e
PRIA)−∑

t−1
i=1 Ire(xi)

]
and DSe

BCPP ≡ xt l−
(
tαe

BCPP−∑
t−1
i=1 xil

)
.

Corollary 2.3. The probability and severity of PRIA’s budget deficit are lower than BCPP’s for

pandemic risks with low event probability:

DPe
PRIA < DPe

BCPP and DSe
PRIA < DSe

BCPP, when p <
K
tl
. (37)

The intuition is as follows. BCPP covers the pandemic losses from the first dollar, while

PRIA (PRRP) shares the pandemic risk with the private insurer and covers the losses between

the insurer’s retention and a reinsurance limit. The reserves of PRIA and BCPP are accumulated

from the actuarially fair premium income in each period. When the pandemic probability p is

small (i.e., p < K
tl ), BCPP charges a price slightly higher than that of PRIA but covers much larger

potential losses because PRIA (PRRP) is a non-proportional reinsurance and only covers the losses

in the excess layer. The larger losses covered by BCPP are thus more likely to exceed the program

29When the private pandemic insurance market under PRIA is more competitive, businesses’ expected utilities drive
the expected social utility higher in the BCPP case than in the PRIA case, i.e., V e

PRIA ≤V e
BCPP, when 0≤ η ≤ η̂ .
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reserves, whereas PRIA can still pay for the losses with its reserves. In other words, PRIA has

a lower probability of budget deficit.30 The larger losses covered by BCPP also result in a larger

gap between the covered losses and the program reserves, i.e., PRIA’s budget deficit would be

smaller.31

In practice, the pandemic risk market features low competition (few insurers) and low event

probability (once every 10 to 20 years for a region). Therefore, PRIA is likely to be more efficient

and more financially sustainable than BCPP. Previous analyses assume that PRIA and BCPP have

the same scope of coverage. In reality, PRIA (PRRP) and its supported pandemic insurance cover

businesses’ income losses including both operating expenses and profit losses, while BCPP covers

only the former. The broader coverage of PRIA will further improve businesses’ expected utili-

ties. Therefore, PRIA will be more efficient than BCPP considering their difference in coverage.

PRIA may increase the default probability of private insurers offering pandemic coverage in a less

competitive environment according to Proposition 3. Thus, keeping solvency regulation standards

high is critical to the success of PRIA. A solvency-based entry requirement might be expected for

private insurers to participate in the PRRP.

Previous analyses on PRIA and BCPP assume away the inter-temporal correlation of pandemic

losses and its associated moral hazard problem. We show in the following corollary that incorpo-

rating them weakens the conclusion in Corollary 2.1 but does not change the qualitative results of

the comparison between PRIA and BCPP in Corollaries 2.2 and 2.3.

Corollary 2.4. PRIA is more effective than BCPP in term of in terms of supporting the pandemic

risk transfer, when pandemic losses are inter-temporally correlated and the purpose of business

closure is unobservable:
q̂BCPP < q̂PRIA. (38)

The intuition is as follows. In the two-period framework that allows businesses to hide their

purpose of closure (i.e., the moral hazard is present), businesses tend to close proactively in period

1 and buy the government-provided pandemic insurance (i.e., BCPP) to fully recover their losses.

Thus, in the equilibrium, BCPP cannot be available due to the moral hazard problem. In the PRIA

30For example, an insurer’s retention is 0.4 billion and a 1 billion loss event occurs. PRRP would bear 0.6 billion
of the losses and BCPP would bear 1 billion. When the pandemic probability p is small and the premiums are also
small relative to the coverage, the accumulated reserves are less likely to fill such a large difference in coverage, and
therefore BCPP is more likely to have a budget deficit.

31The relationship is undetermined for high-probability risks with p≥ K
tl .
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case, businesses tend to open in period 1 as the their expected losses are smaller if they open than

if they close. This is because business closure will result in a larger probability of the private

insurer default and a larger default residual loss borne by the businesses. Therefore, PRIA is more

effective than BCPP to support the pandemic risk transfer.

6. Discussion: Alternative Government Intervention Policy

In this section, we compare our government reinsurance program with two alternative gov-

ernment intervention policies that are (i) ex-post government catastrophe relief program and (ii)

solvency regulation. A formal proof for the comparison results is provided in Appendices E1 and

E2, respectively.

6.1. Ex-post catastrophe relief program

Charpentier and Le Maux (2014) develop a model to analyze an ex-post government catastro-

phe relief program (hereafter the GRel case, also called disaster aid program). In their model, the

government charges a post-catastrophe tax T (x) on each individual in a region to cover the residual

loss when a monopolistic insurer defaults due to a catastrophe event. Thus, the ex-post tax depends

on the share of catastrophe-hit population x, that is T (x) = xl− (αCL +CCL) if the insurer is in-

solvent and T (x) = 0 if it is solvent. There is no reinsurance in the GRel case (i.e., K = M = 0).

In their equilibrium, the insurer sets the catastrophe insurance premium α∗CL at each individual’s

maximum willingness to pay given exogenous zero-cost capital CCL and a monopolistic catastro-

phe insurance market. To create a fair comparison, we add the cost of capital rCCL to the insurer’s

expected profit equation in the GRel case.

Government reinsurance and ex-post catastrophe relief programs function at different phases

in the development of catastrophe risks: the government reinsurance shares losses before the in-

surer defaults and the ex-post catastrophe relief program covers the residual loss after the insurer

defaults. Therefore, the government reinsurance program is more efficient if the catastrophe risk is

moderately heavy-tailed such that the catastrophe losses L are more concentrated in the range cov-

ered by the CAT XL reinsurance between K and K+K, for example, a Pareto distribution shown in

Figure 7(a). The catastrophe relief program is more efficient if the catastrophe risk are extremely

heavy-tailed such that the residual loss after insurer default (i.e., the losses beyond xl) are large,

for example, the distribution used by Charpentier and Le Maux (2014) in Figure 7(b).
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Figure 7: Moderate vs. Extreme Heavy-Tail Catastrophe Risk Distributions

The combination of government reinsurance and catastrophe relief programs (the “RR” case,

hereafter) will, however, lead to a definite improvement in the expected social utility. In the RR e-

quilibrium, the government covers both the catastrophe losses under the reinsurance and the default

losses of the insurer. Thus, individuals will have expected utility gains from the free-of-default RR

program and the insurer can further saves capital cost by charging higher premiums when indi-

viduals are willing to pay more for the no-default insurance. Depending on the market structure,

individuals and the insurer share the additional benefits of the combined program. Our results sug-

gest that establishing a formal government reinsurance program with ex-ante catastrophe tax and

reinsurance premium is efficient and practical in addition to the ad-hoc post-catastrophe relief that

a modern government is always expected to offer.

Given a positive capital cost, government reinsurance ensures the existence of the private catas-

trophe insurance market, but the catastrophe relief program cannot. Moreover, government rein-

surance can take the advantage of the tradeoff between catastrophe tax and reinsurance premium

to further improve the expected social utility, while the catastrophe relief program cannot because

the ex-post catastrophe tax in the GRel case is determined by the amount of residual losses in-

stead of the government’s optimal choice. A practical concern also arises with charging ex-post

tax to catastrophe victims because they are usually experiencing financial difficulties. Our ex-ante

catastrophe tax design addresses this concern. The disadvantage of government reinsurance lies

that it may increase the insurer’s default probability when competition is insufficient, while the

catastrophe relief program can always reduce the insurer’s default probability.
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6.2. Solvency regulation

Solvency capital regulation is a prevalent tool of governments and regulators to limit the default

probability of insurers. Bernard and Tian (2009) define the solvency regulation as follows:

Prob
[
xl > α +C+R(K−M)

]
≤ θ , (39)

where θ (0< θ < 1) is the maximum acceptable default probability of a solvency regulation. In the

regulated GR case, the solvency regulation is a constraint on the insurer. Other decision process

remains unchanged compared to the unregulated GR case. Define θ e the insurer’s default probabil-

ity in the unregulated GR equilibrium. When the solvency regulation requires a default probability

higher than or equal to θ e, the regulation is not tight and the regulated GR equilibrium is the same

as the unregulated GR equilibrium. When the solvency regulation requires a default probability

lower than θ e, the insurer will hold capital at the minimum level that meets the regulatory require-

ment Ce
s = xsl−αe

s +Me
s −K, where xs ≡VaRx(θ) (i.e., Prob(x≥ xs) = θ ) is exogenous. αe

s and

Me
s are the insurance premium and reinsurance premium in the regulated GR equilibrium.

The goals of government reinsurance and solvency regulation are different. The former aims to

improve the expected social utility and the latter to reduce the insurer’s default probability. Thus,

naturally, solvency regulation introduces a tradeoff between the regulatory target default probabil-

ity and the expected social utility. As shown in Figure 8, when the solvency regulation requires the

insurer to hold more capital than the unregulated optimal capital (i.e., 0 < θ < θ e), the extra cap-

ital causes a higher cost for the insurer, decreases the insurer’s expected profit, and thus decreases

the expected social utility. The insurer may also need more tax subsidy to reinsurance premium

when it cannot bear all the increased cost of capital and faces competitive pressure on expected

profit. The additional tax beyond the unregulated optimal level will also decrease individuals’ ex-

pected utilities, and hence the expected social utility. The optimal expected social utility in the

regulated GR case is equal to that in the unregulated case when the solvency regulation is not tight

(i.e., θ ≥ θ e). To achieve a lower default probability than θ e, the government can impose a tight

solvency regulation at the expense of lower expected social utility.
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Figure 8: Tradeoff between Target Default Probability and Expected Social Utility
Note: V e

s (θ) (V e) is the optimal expected social utility in the regulated (unregulated) GR equilibrium. When θ < θ e,
V e

s (θ) is increasing in θ . When θ ≥ θ e, V e
s (θ) is equal to V e.

This tradeoff is particularly important in the catastrophe risk market where insurance and risk

diversification are insufficient (Gollier, 2008). Solvency regulation alone may exacerbates the

underinsurance problem in a catastrophe insurance market because it imposes additional capital

cost for the insurer and further decreases the insurer’s profitability. A combination of solvency

regulation and government reinsurance can maximize the expected social utility at an acceptable

level of default probability.

7. Conclusion

We develop a dynamic game model to investigate the equilibrium of a catastrophe risk market

with government reinsurance. To our best knowledge, no theoretical framework has been devel-

oped to characterize the catastrophe market equilibrium involving three decision makers in both

the primary insurance and reinsurance markets. Our model for efficient catastrophe risk-sharing

fills this gap by enabling individuals, the private insurer, and the government to derive their opti-

mal pricing, capital, and purchasing decisions in one equilibrium. Our model is original in that (i)

it introduces the tradeoff of a centralized agency to fund the reinsurance program between catas-

trophe taxes charged from individuals and reinsurance premiums charged from the insurer; this

tradeoff improves the social welfare, and that (ii) it identifies new impact channels of government

intervention on the efficiency of catastrophe risk-sharing.

Our public-private risk-sharing model offers a useful framework to analyze the ongoing catas-

trophe of the COVID-19 pandemic and its (re)insurance solutions. Our model calibrations based

on various COVID-19 scenarios show that government reinsurance can improve the efficiency of

pandemic risk-sharing compared to the cases of no reinsurance and private reinsurance. However,

the efficiency gains are traded-off with a “pandemic tax” that decreases individuals’ expected utili-
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ties in a low-competition pandemic insurance market and are insufficient to compensate the welfare

losses due to massively widespread pandemic. Different from many natural catastrophes, the pan-

demic losses are inter-temporally correlated and therefore introduce a tradeoff between economic

development (business open) and pandemic spread. Both private and government reinsurance can

improve the viability of pandemic insurance and therefore support businesses to open, which is,

however, at the cost of continuing the pandemic spread. When the inter-temporal correlation is

excessively large, neither government nor private reinsurance can help to sustain the pandemic

insurance market.

The model predictions and calibrations yield important public policy implications on the risk

management of the COVID-19 and future pandemics. A public-private partnership in pandemic

risk-sharing, for example, the PRIA and BCPP discussed in the U.S., is necessary to ensure the

viability of pandemic risk transfer. Our analyses favor the government reinsurance program (PRI-

A) as it is more efficient in terms of the expected social utility and more financially sustainable

than the government insurance program (BCPP) in a low-competition and low-frequency pandem-

ic insurance environment. Taking advantage of the tradeoff between reinsurance premium and

pandemic tax to fund the government reinsurance program will further improve the social welfare

under PRIA. Moreover, any government pandemic reinsurance program should be coupled with

social distancing measures to control for the pandemic spread, with business lockdown policies

to reduce the inter-temporal correlation of pandemic losses, and with anti-monopoly policies to

balance the interests of individuals and insurers.

The equilibrium in the catastrophe risk market with government reinsurance is a set of optimal

decisions of the individuals, the private insurer, and the government: (i) All individuals buy the

catastrophe insurance, (ii) the private insurer earns a nonnegative expected profit from offering the

full coverage and buying the government reinsurance, and (iii) the government funds the reinsur-

ance program by charging reinsurance premiums from the insurer and ex-ante catastrophe taxes

from all individuals exposed to the catastrophe risk. The private catastrophe insurance market fails

to exist when both risk correlation and capital cost exceed their respective thresholds. The results

justify a third-party risk-sharing mechanism in a catastrophe risk market. Compared with private

reinsurance, government reinsurance achieves the best balance between individuals’ expected u-

tilities and the insurer’s expected profit and therefore improves the social welfare (defined as the

expected social utility). In less competitive catastrophe insurance markets, however, government
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reinsurance may reduce the expected utilities of individuals and increase the default probability of

the insurer.

Our results add new insights to the economics of catastrophe risk-sharing. The advantages of

government reinsurance over private reinsurance manifest via the product quality and capital cost

channels, which capture the strategic behavior changes of existing market players. On the one

hand, the catastrophe tax subsidizes the reinsurance premium; the saved reinsurance premium en-

ables the insurer to hold more costly capital, which improves the product quality, and thus increases

individuals’ expected utilities (i.e., the product quality channel). On the other hand, the catastrophe

tax increases individuals’ maximum willingness to pay for and thus the total contribution to catas-

trophe risk transfer, which offsets the insurer’s incentive to hold more capital for higher premium,

saves its capital cost, and thus increases the insurer’s expected profit (i.e., the capital cost channel).

Both channels transmit a positive impact of government reinsurance on the expected social utility,

but have opposite impacts on the insurer’s default probability. Through the product quality (capital

cost) channel, the government reinsurance decreases (increases) the insurer’s default probability.

The strengths of the two channels wane and wax depending on the market structure. As the in-

surance market becomes more competitive, the product quality channel becomes stronger, but the

capital cost channel weakens. The product quality channel shuts down in a monopolistic market

and the capital cost channel shuts down in a perfectly competitive market.

The discovery of the equilibrium and its two channels offers new managerial insights to catas-

trophe risk management. By sharing the catastrophe risks of individuals and the private insurer,

government reinsurance improves the catastrophe risk market towards a more willing-to-participate

and more capital-cost-efficient state. The government reinsurance is applicable to broad types of

catastrophe risks and to various layers of reinsurance retention and limit. The pricing of govern-

ment reinsurance is risk-based, affordable, long-term wise breakeven without external financial

resources, and sustainable with certain loadings of operational costs and interest rates. Our results

also suggest that the government reinsurance should always be coupled with the anti-monopoly

policies. Although large insurers are better at catastrophe risk diversification, competition in a

catastrophe insurance market has its unique values and should be encouraged for two reasons: (i)

competition balances individuals’ expected utilities and the insurer’s expected profit to achieve the

Pareto improvement; (ii) competition mitigates the problem of increasing default probability of the

insurer due to the government reinsurance.
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We frame the model in the terminology of catastrophe/pandemic risk markets. It can also be

used as a general framework for analyzing risk-sharing decisions with a public-private partnership

nature; that is, three parties—the public, the private, and consumers—have their own objectives

and risk-sharing decisions to make. For example, the reserve-bailout mechanism of International

Monetary Fund can be seen as a type of reinsurance provided by a centralized agency to cover the

systemic risk of economic/financial crisis where the national/local government plays the role of

insurer. The concept of government reinsurance may offer a new perspective to revisit the social

insurance program. Conventionally, public pension and social health insurance provide coverage

from the ground risk layer, so as the private pension and private health insurance. Can social

insurance programs concentrate the limited resources on covering the undiversified catastrophe

layer of longevity and pandemic risks by offering reinsurance to support the private insurance

market? Our public-private risk-sharing model offers a new framework to analyze these questions.

Our model assumes an exogenous capital cost that reflects the expected return of investors.

Future research might consider to connect the insurance market and the capital market by linking

the degree of individuals’ risk aversion and the insurer’s shareholders’ expected return to bear the

catastrophe risks. Moreover, this paper focuses on comparing government reinsurance with private

reinsurance and, therefore, do not consider their competition in one catastrophe risk market. We

leave these questions for future research.
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Public-Private Catastrophe Risk-Sharing:

Theory and Application to COVID-19

All Appendices are intended for review and for online publishing as supplementary materials.

The Appendices are ordered according to where they are first referenced in the main text. Ap-

pendix A proves the equilibrium of our catastrophe risk-sharing model. Appendix B proves the

propositions. Appendix C proves the impact channels and pricing of government reinsurance. Ap-

pendix D presents proof and additional results for the COVID-19 applications. Appendix E proves

the alternative government intervention policies.
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Appendix A: Proof of Equilibriums

Appendix A1: Proof of Equilibrium with No Reinsurance

The NR case is a degenerated GR case with T = K = K = M = 0. There are two players in

the game: individuals and the insurer. We solve the game with backward induction starting from

individuals’ purchasing decisions and then to the insurer’s optimal pricing and capital decisions.

When the risk correlation and the unit cost of capital exceed their respective thresholds, i.e.,

δ > δ and r > r, the market fails to exist as shown in Proposition 1. The insurer earns zero expected

profit Πe
n = 0 and individuals end up with uninsured expected utility Ue

in = pU(−l). The expected

social utility is thus V e
n =Ue

in.

When the private catastrophe insurance market exists, i.e., 0 ≤ δ ≤ δ or 0 ≤ r ≤ r, we prove

that all individuals purchase the catastrophe insurance, i.e., λ e
n = 1 and derive the insurer’s optimal

decisions in different market structures, respectively.

Suppose to the contrary that in the equilibrium, the insurer sells the catastrophe insurance to

λn1 (0 < λn1 < 1) individuals with insurance premium αn1 and holding capital Cn1. The insurer’s

expected profit is non-negative:

Πn(λn1,αn1,Cn1) =
∫ xn1

0
(λn1αn1−λn1xl) f (x)dx− [1−F(xn1)]Cn1− rCn1 ≥ 0, (A1-1)

where xn1 =
1

λn1l (λn1αn1 +Cn1). For those insured individuals, their insured expected utility is no

less than their uninsured expected utility:

Uin(λn1,αn1,Cn1) =
∫ xn1

0
xU(−αn1) f (x)dx+

∫ 1

xn1

xU(−αn1− l +
xn1

x
l) f (x)dx+

∫ 1

0
(1− x)U(−αn1) f (x)dx

≥ pU(−l).
(A1-2)

Alternatively, we can prove that there exists an insurance premium αn1 and capital Cn1
λn1

such

that all individuals are willing to purchase the catastrophe insurance as the insured expected utility

is higher than uninsured utility and that the insurer achieves higher expected profit by selling

insurance to all individuals:

Uin(λ = 1,αn1,
Cn1

λn1
) =

∫ xn2

0
xU(−αn1) f (x)dx+

∫ 1

xn1

xU(−αn1− l +
xn2

x
l) f (x)dx+

∫ 1

0
(1− x)U(−αn1) f (x)dx

=Uin(λn1,αn1,Cn1)

≥ pU(−l),
(A1-3)
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where the first equality is the definition of insured expected utility; the second equality follows

from xn2 =
1
l (αn1 +

Cn1
λn1

) = xn1; and the inequality follows from Eq.(A1-2).

Πn(λ = 1,αn1,
Cn1

λn1
) =

∫ xn2

0
(αn1− xl) f (x)dx− [1−F(xn2)]

Cn1

λn1
− r

Cn1

λn1

=
1

λn1
Πn(λn1,αn1,Cn1)

> Πn(λn1,αn1,Cn1),

(A1-4)

where the first equality is the definition of the insurer’s expected profit; the second equality follows

from xn2 = xn1; and the inequality follows from 0 < λn1 < 1.

In conclusion, both the insurer and individuals have incentives to insure the rest 1− λn1 of

individuals. Thus, in the equilibrium, i.e., λ e
n = 1.

Next, we prove the optimal decisions of the insurer in the NR equilibrium. Note that at the

maximum willingness to pay α∗n (Cn), individuals are indifferent between buying the catastrophe

insurance or not:∫ xn3

0
xU(−α

∗
n (Cn)) f (x)dx+

∫ 1

xn3

xU
(
−α

∗
n (Cn)− l +

xn3

x
l
)

f (x)dx+
∫ 1

0
(1−x)U(−α

∗
n (Cn)) f (x)dx= pU(−l),

(A1-5)

where xn3 =
1
l (α

∗
n (Cn)+Cn).

In a monopolistic market where η = 1, the insurer decides the insurance premium αn and its

capital Cn to maximize its expected profit, i.e.,maxαn,Cn Πn(αn,Cn) =
∫ xn

0 (αn− xl) f (x)dx− [1−

F(xn)]Cn− rCn. Given any Cn, the insurer’s expected profit Πn(αn,Cn) is increasing in αn and thus

the insurer sets the premium at individuals’ maximum willingness to pay α∗n (Cn). The optimal

capital C∗n satisfies:
d

dCn
Πn(α

∗
n (C

∗
n),C

∗
n) = F(x∗n)

d
dCn

α
∗
n (C

∗
n)− [1−F(x∗n)+ r] = 0, (A1-6)

where x∗n =
1
l (α

∗
n (C

∗
n)+C∗n). Thus, The optimal insurance premium α∗n is α∗n =α∗n (C

∗
n). Therefore,

the monopolistic insurer’s expected profit in the equilibrium is:

Π
∗
n =

∫ x∗n

0
(α∗n − xl) f (x)dx− [1−F(x∗n)]C

∗
n− rC∗n . (A1-7)

In a perfectly competitive market where η = 0, the insurer offers the market price α̃ to indi-

viduals. Its optimal capital C∗∗n can be derived from the zero expected profit condition:∫ x∗∗n

0
(α̃− xl) f (x)dx− [1−F(x∗∗n )]C∗∗n − rC∗∗n = 0, (A1-8)

where x∗∗n = 1
l (α̃ +C∗∗n ).
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In markets with imperfect competition where 0 < η < 1, the insurer decides the insurance

premium αn and its capital Cn to maximize its expected profit with constraints:

max
αn,Cn

Πn(αn,Cn) =
∫ xn

0
(αn− xl) f (x)dx− [1−F(xn)]Cn− rCn.

s.t.αn = ηα
∗
n (Cn)+(1−η)α̃,

Πn(αn,Cn)≤ ηΠ
∗
n,

(A1-9)

where the first constraint limits the market pricing power and the second constraint limits the

profitability due to competitive pressure. In the equilibrium, the optimal premium income capital

Ce
premium,n(η) maximizes the insurer’s expected profit without considering the profitability con-

straint:
d

dCn
Πn(ηα

∗
n (C

e
premium,n(η))+(1−η)α̃,Ce

premium,n(η))

= ηF(xn4)
d

dCn
α
∗
n (C

e
premium,n(η))− [1−F(xn4)+ r] = 0,

(A1-10)

where xn4 =
1
l [α
∗
n (C

e
premium,n(η))+Ce

premium,n(η)]. The optimal product quality capital Ce
quality,n(η)

can then be derived from the profitability constraint:∫ xe
n

0
[αe

n(η)− xl] f (x)dx− [1−F(xe
n)+ r][Ce

quality,n(η)+Ce
premium,n(η)] = ηΠ

∗
n, (A1-11)

where xe
n =

1
l [α

e
n(η)+Ce

quality,n(η)+Ce
premium,n(η)]. The optimal capital Ce

n(η) is the sum of the

product quality capital and the premium income capital, i.e., Ce
n(η) =Ce

quality,n(η)+Ce
premium,n(η).

The optimal insurance premium αe
n(η) equals to the weighted sum of individuals’ maximum will-

ingness to pay and the exogenous market price, i.e., αe
n(η) = ηα∗n (C

e
n(η)) + (1−η)α̃ . When

η = 1 (η = 0), we have αe
n(1) = α∗n (αe

n(0) = α̃) and Ce
n(1) =C∗n (Ce

n(0) =C∗∗n ).

Therefore, each individual’s expected utility, the insurer’s expected profit, and the expected

social utility are as follows:

Ue
in =

∫ xe
n

0
xU(−α

e
n(η)) f (x)dx+

∫ 1

xe
n

xU(−α
e
n(η)−l+

xe
n
x

l) f (x)dx+
∫ 1

0
(1−x)U(−α

e
n(η)) f (x)dx,

(A1-12)

Π
e
n = ηΠ

∗
n, (A1-13)

V e
n =Ue

in +Π
e
n. (A1-14)

Appendix A2: Proof of Equilibrium with Private Reinsurance

The PR case is a degenerated GR case with T = 0. We first prove that all individuals purchase

the catastrophe insurance in the equilibrium, i.e., λ e
p = 1 and then derive the insurer’s optimal
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pricing, capital, and reinsurance decisions.

λ e
p = 1 follows from two steps: (i) When the insurer does not buy reinsurance, all individuals

purchase the catastrophe insurance, which has been proved in Appendix A1; (ii) Buying reinsur-

ance with fair premium does not decrease the insured population. Buying reinsurance increases

the insurer’s expected profit, motivating the insurer to offer insurance to more individuals. Buy-

ing reinsurance improves the insurance quality and thus individuals are also more willing to buy

catastrophe insurance in the equilibrium. Thus, buying reinsurance does not decrease the insured

population.

In the equilibrium, the insurer purchases the private reinsurance Re
p = 1 because given any αp

and Cp, the insurer always earns a higher expected profit by buying reinsurance:

Πp(αp,Cp− (K−Mp),Rp = 1)

=
∫ xp1

0
[αp−Mp− xl + Ire(x)] f (x)dx− [1−F(xp1)][Cp− (K−Mp)]− r[Cp− (K−Mp)]

=
∫ xp1

0
(αp− xl) f (x)dx− [1−F(xp1)]Cp− rCp + r(K−Mp)

>Π(αp,Cp,Rp = 0),

(A2-1)

where xp1 =
1
l (αp +Cp).

Note that at the maximum willingness to pay α∗p(Cp), individuals are indifferent between buy-

ing insurance or not:∫ xp2

0
xU(−α

∗
p(Cp)) f (x)dx+

∫ 1

xp2

xU
(
−α

∗
p(Cp)− l +

xp2

x
l
)

f (x)dx+
∫ 1

0
(1−x)U(−α

∗
p(Cp)) f (x)dx= pU(−l),

(A2-2)

where xp2 =
1
l [α
∗
p(Cp)+Cp +K−Mp].

We derive the insurer’s optimal pricing and capital decisions in different market structures,

respectively. In a monopolistic market where η = 1, the insurer decides the insurance premi-

um αp and its capital Cp to maximize its expected profit, i.e., maxαp,Cp Πp(αp,Cp,Re
p = 1) =∫ xp

0 [αp−Mp− xl + Ire(x)] f (x)dx− [1− F(xp)]Cp− rCp. Given any Cp, the insurer’s expected

profit Πp(αp,Cp,Re
p = 1) is increasing in αp and thus the insurer sets the insurance premium at

individuals’ maximum willingness to pay α∗p(Cp). The optimal capital C∗p satisfies:
d

dCp
Πp(α

∗
p(Cp),Cp,Re

p = 1) = F(x∗p)
d

dCp
α
∗
p(C
∗
p)− [1−F(x∗p)+ r] = 0, (A2-3)

where x∗p =
1
l [α
∗
p(C
∗
p)+C∗p +K−Mp]. Thus, the optimal insurance premium α∗p is α∗p = α∗p(C

∗
p).
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Therefore, the insurer’s expected profit in the equilibrium is:

Π
∗
p =

∫ x∗p

0

[
α
∗
p−Mp− xl + Ire(x)

]
f (x)dx− [1−F(x∗p)]C

∗
p− rC∗p. (A2-4)

In a perfectly competitive market where η = 0, the insurer offers the market price α̃ to indi-

viduals. Its optimal capital C∗∗p can be derived from the zero expected profit condition:∫ x∗∗p

0
[α̃−Mp− xl + Ire(x)] f (x)dx− [1−F(x∗∗p )]C∗∗p − rC∗∗p = 0, (A2-5)

where x∗∗p = 1
l [α̃ +C∗∗p +K−Mp].

In markets with imperfect competition where 0 < η < 1, the insurer decides the insurance

premium αp and its capital Cp to maximize its expected profit with two constraints: (i) limited

market pricing power constraint, i.e., αp = ηα∗p(Cp)+ (1−η)α̃ and (ii) profitability constrain-

t, i.e., Πp(αp,Cp,Re
p = 1) ≤ ηΠ∗p. In the equilibrium, the optimal capital Ce

p(η) is the sum

of the optimal premium income capital and the optimal product quality capital, i.e., Ce
p(η) =

Ce
premium,p(η)+Ce

quality,p(η). The optimal premium income capital Ce
premium,p(η) maximizes the

insurer’s expected profit without any profitability constraint:

ηF(xp3)
d

dCp
α
∗
p(C

e
premium,p(η))− [1−F(xp3)+ r] = 0, (A2-6)

where xp3 =
1
l [α
∗
p(C

e
premium,p(η))+Ce

premium,p(η)+K−Mp]. The optimal product quality capital

Ce
quality,p(η) is derived from the profitability constraint:∫ xe

p

0

[
α

e
p(η)−Mp− xl + Ire(x)

]
f (x)dx− [1−F(xe

p)+ r][Ce
quality,p(η)+Ce

premium,p(η)] = ηΠ
∗
p,

(A2-7)

where xe
p =

1
l [α

e
p(η)+Ce(η)+K−Mp]. The optimal insurance premium αe

p(η) is at the weight-

ed sum of individuals’ maximum willingness to pay and the exogenous market price αe
p(η) =

ηα∗p(C
e
p(η))+ (1−η)α̃ . When η = 1 (η = 0), we have αe

p(1) = α∗p (αe
p(0) = α̃), Ce

p(1) = C∗p

(Ce
p(0) =C∗∗p ).

Therefore, each individual’s expected utility, the insurer’s expected profit, and the expected

social utility are as follows:

Ue
ip =

∫ xe
p

0
xU(−α

e
p(η)) f (x)dx+

∫ 1

xe
p

xU(−α
e
p(η)−l+

xe
p

x
l) f (x)dx+

∫ 1

0
(1−x)U(−α

e
p(η)) f (x)dx,

(A2-8)

Π
e
p = ηΠ

∗
p, (A2-9)

V e
p =Ue

ip +Π
e
p. (A2-10)
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Appendix A3: Proof of Equilibrium with Government Reinsurance

We prove the GR equilibrium in three steps with backward induction. We start from the last

decision maker—the individuals. Then we derive the insurer’s optimal decisions under different

market structures. Last, we come to the government’s optimal decisions.

Individuals’ Decision

All individuals purchase the catastrophe insurance and the insurer is willing to offer insurance

to all individuals in the GR equilibrium. The proofs are the same as those for the NR and PR

equilibriums and documented in Appendices A1 and A2.

Insurer’s Decisions

The insurer purchases the government reinsurance Re = 1 because given any α , C, T , and

M = E[Ire(x)]−T , the insurer always earns a higher expected profit by buying reinsurance:

Π(α,C− (K−M),R = 1,M) = Π(α,C,R = 0,M)+T e + r(K−M)> Π(α,C,R = 0,M).

(A3-1)

Note that at the maximum willingness to pay α∗(C,T ), individuals are indifferent between

buying catastrophe insurance or not:∫ x1

0
xU (−α

∗(C,T )−T ) f (x)dx+
∫ 1

x1

xU
(
−α
∗(C,T )−T − l +

x1

x
l
)

f (x)dx

+
∫ 1

0
(1− x)U(−α

∗(C,T )−T ) f (x)dx = pU(−l−T )+(1− p)U(−T ),
(A3-2)

where x1 =
1
l [α
∗(C,T )+C+K−M].

The insurer’s optimal insurance premium αe(T ) and optimal capital Ce(T ) given any T and

M = E[Ire(x)]−T are proved under different market structures. In a monopolistic market where

η = 1, the insurer decides the insurance premium α and its capital C to maximize its expected

profit, i.e., maxα,C Π(α,C,Re = 1,M) =
∫ x

0 [α−M− xl + Ire(x)] f (x)dx− [1−F(x)]C− rC. Given

any C, the insurer’s expected profit Π(α,C,Re = 1,M) is increasing in α and thus the insurer sets

the premium at individuals’ maximum willingness to pay α∗(C,T ). The optimal capital C∗(T )

given any T satisfies:
d

dC
Π(α,C,Re = 1,M) = F(x∗(T ))

d
dC

α
∗(C∗(T ),T )− [1−F(x∗(T ))+ r] = 0, (A3-3)

where x∗(T )= 1
l [α
∗(C∗(T ),T )+C∗(T )+K−E[Ire(x)]+T ]. Thus, the optimal insurance premium

α∗(T ) given any T is α∗(T ) =α∗(C∗(T ),T ). Therefore, the monopolistic insurer’s expected profit
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given any T and M = E[Ire(x)]−T is:

Π
∗(M,T ) =

∫ x∗(T )

0
[α∗(T )−M− xl + Ire(x)] f (x)dx− [1−F(x∗(T ))]C∗(T )− rC∗(T ). (A3-4)

In a perfectly competitive market where η = 0, the insurer’s optimal capital C∗∗(T ) given any

T is derived from the zero expected profit condition:∫ x∗∗(T )

0
[α̃−E[Ire(x)]+T − xl + Ire(x)] f (x)dx− [1−F(x∗∗(T ))]C∗∗(T )− rC∗∗(T ) = 0. (A3-5)

In markets with imperfect competition where 0 < η < 1, the insurer decides the premium

α and its capital C to maximize its expected profit with two constraints: (i) the limited market

pricing power constraint, i.e., α = ηα∗(C,T )+ (1−η)α̃ and (ii) the profitability constraint, i.e.,

Π(α,C,Re = 1,M) ≤ ηΠ∗(M,T ). In the equilibrium, the optimal capital Ce(T ;η) given any T

is the sum of the optimal premium income capital and the optimal product quality capital, i.e.,

Ce(T ;η) = Ce
quality(T ;η)+Ce

premium(T ;η). The optimal premium income capital Ce
premium(T ;η)

given T maximizes the insurer’s expected profit without considering the profitability constraint:

ηF(x2(T ))
d

dC
α
∗(Ce

premium(T ;η),T )− [1−F(x2(T ))+ r] = 0, (A3-6)

where x2(T ) = 1
l [α
∗(Ce

premium(T ;η),T )+Ce
premium(T ;η)+K−M]. The optimal product quality

capital Ce
quality(T ;η) given T can then be derived from the profitability constraint:∫ xe(T )

0
[αe(T )−M− xl + Ire(x)] f (x)dx−[1−F(xe(T ))+r][Ce

quality(T ;η)+Ce
premium(T ;η)]=ηΠ

∗(M,T ),

(A3-7)

where xe(T ) = 1
l [α

e(T ) +Ce(T ;η) + K −M]. The optimal insurance premium αe(T ;η) is at

the weighted sum of individuals’ maximum willingness to pay and the exogenous market price,

i.e., αe(T ;η) = ηα∗(Ce(T ;η),T )+ (1−η)α̃ . When η = 1 (η = 0), we have αe(T ;1) = α∗(T )

(αe(T ;0) = α̃) and Ce(T ;1) =C∗(T ) (Ce(T ;0) =C∗∗(T )).

Government’s Decisions

The government decides the catastrophe tax T and the reinsurance premium M to maximize

the expected social utility with some constraints. The budget constraint of the government T +

M ≥ E[Ire(x)] is binding in the equilibrium. If the government reinsurance has a surplus, the

government can always improve the expected social utility by lowering the reinsurance premium

or the catastrophe tax.

The insurer’s non-negative profit constraint, i.e., Π(αe(T ;η),Ce(T ;η),Re = 1,M) ≥ 0 is al-

ways satisfied given any T and M = E[Ire(x)]−T . Given any T ≥ 0, the government reinsurance
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premium is lower than the private reinsurance premium, i.e., M ≤Mp. Ceteris paribus, the insur-

er’s expected profit is higher with lower reinsurance premium. Thus, the insurer’s expected profit

in the GR equilibrium is higher than that in the PR equilibrium. Given the insurer’s expected profit

in the PR equilibrium is non-negative, the insurer’s expected profit is always non-negative in the

GR case with any T ≥ 0.

Thus, the optimization problem of the government can be simplified as

maxT V (T ) =V (αe(T ;η),Ce(T ;η),Re = 1,E[Ire(x)]−T,T ). The optimal catastrophe tax T e can

be derived from the first order condition:
d

dT
V (T e) =

d
dT

Ui (α
e(T e;η),T e)+

d
dT

Π(αe(T e;η),Ce(T e;η),Re = 1,Me) = 0. (A3-8)

The optimal reinsurance premium can then be derived from the binding budget constraint:

Me = E[Ire(x)]−T e. (A3-9)

Recall that given any catastrophe tax T , the insurer’s optimal premium is αe(T ;η) and its

optimal capital is Ce(T ;η). Given the optimal catastrophe tax T e, we have the the insurer’s optimal

decisions in the GR equilibrium as shown in Eq.(12)-Eq.(17).

Therefore, each individual’s expected utility, the insurer’s expected profit, and the expected

social utility are as follows:

Ue
i =

∫ xe

0
xU(−α

e(η)−T ) f (x)dx+
∫ 1

xe
xU(−α

e(η)−T−l+
xe

x
l) f (x)dx+

∫ 1

0
(1−x)U(−α

e(η)−T ) f (x)dx,

(A3-10)

Π
e = ηΠ

∗(Me,T e), (A3-11)

V e =Ue
i +Π

e. (A3-12)

Appendix A4: Proof of Equilibrium with Alternative Social Welfare Functions

Consider that the social expected utility is defined as the weighted sum of individuals’ expected

utilities and the insurer’s expected profit, i.e., V̂ (α,C,R,M,T )≡ωUi(α,T )+(1−ω)Π(α,C,R,M),

where 0≤ ω ≤ 1. We prove the equilibrium with this weighted social welfare function with back-

ward induction. Given any catastrophe tax T and reinsurance premium M, individuals’ and the

insurer’s optimal decisions are proved in Appendix A3. All individuals buy the catastrophe in-

surance, i.e., λ̂ e = 1. The insurer buys the government reinsurance, i.e., R̂e = 1, sets the primary

insurance premium at αe(T ;η), and holds capital at Ce(T ;η) = Ce
quality(T ;η)+Ce

premium(T ;η).

Last, we come the government’s optimal decisions.
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With individuals’ and the insurer’s optimal decisions as well as the government’s binding bud-

get constraint, the weighted expected social utility is

V̂ (T )≡ V̂ (αe(T ;η),Ce(T ;η),Re = 1,E[Ire(x)]−T,T )

= ωUi(α
e(T ;η),T )+(1−ω)Π(αe(T ;η),Ce(T ;η),Re = 1,E[Ire(x)]−T ).

(A4-1)

Let d
dT V̂ (T̂ (η)) = 0. Thus, if T̂ (η) satisfies 0≤ T̂ ≤ E[Ire(x)], T̂ e(η) = T̂ (η) is the optimal catas-

trophe tax. Under different market structures η and the weight of individuals’ expected utilities ω ,

the optimal catastrophe tax may not be interior.

In a perfect competitive market where η = 0, the insurer’s expected profit is zero and thus

maximizing the weighted expected social utility is equivalent to maximizing individuals’ expected

utilities for the government. The weight ω does not affect the government’s optimal decisions, i.e.,

T̂ e(η = 0) = T̂ (η = 0). (A4-2)

In markets with imperfect competition or a monopolistic market where 0 < η ≤ 1, the insurer’s

expected profit is increasing in the catastrophe tax and thus ∀T , dV̂ (T )
dT > 0 if ω = 0. There exists

0 < ω(η)< 1 such that d
dT V̂ (E[Lre(x)]) = 0. If ω = 1 and η = 1, individuals’ uninsured expected

utilities are decreasing in the catastrophe tax and thus ∀T , dV̂ (T )
dT < 0. Therefore, there exists η1

such that when η1 < η ≤ 1, ∀T , dV̂ (T )<0
dT . Thus, there exists 0 < ω(η)< 1 (η1 < η ≤ 1) such that

d
dT V̂ (0) = 0. Thus, the optimal catastrophe tax is

T̂ e(η) =


E[Lre(x)], if 0≤ ω < ω(η)

T̂ (η), if ω(η)≤ ω ≤ ω(η)

0, if ω(η)< ω ≤ 1,

(A4-3)

where 0 < ω(η)< 1 when η1 < η ≤ 1 and ω(η) = 1 when 0 < η ≤ η1. When η = 0, ω(η) = 0

and ω(η) = 1. The optimal reinsurance premium is derived from the binding budget constraint,

i.e., M̂e(η) = E[Ire(x)]− T̂ e(η). Recall that given any catastrophe tax T , the insurer’s optimal

insurance premium is αe(T ;η) and its optimal capital is Ce(T ;η). Given the optimal catastrophe

tax T̂ e(η) in the equilibrium, the optimal insurance premium is α̂e(η) = αe(T̂ e(η);η) and the

insurer’s optimal capital is Ĉe(η) =Ce(T̂ e(η);η).

With the weighted social welfare function, our propositions still hold if T̂ e(η)> 0. The detailed

proof is similar to that with an unweighted social welfare function, which is shown in Appendix

B. If T̂ e(η) = 0, the GR equilibrium is equivalent to the PR equilibrium.
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Appendix B: Proof of Propositions

Appendix B1: Proof of Proposition 1

In the NR case, when the risk correlation is high, i.e., δ → 1, almost all individuals suffer a

loss l simultaneously with probability p. Thus, given any Cn,

α
∗
n (Cn)→−U−1

(
p(U(−l)−U(Cn− l))

1− p

)
, as δ → 1, (B1-1)

αn(Cn)→
p+ r
1− p

Cn, as δ → 1, (B1-2)

where individuals’ maximum willingness to pay α∗n (Cn) is independent of r and the insurer’s min-

imum acceptable premium αn(Cn) is increasing to infinity in r. Thus, there exists a minimum

capital cost r such that when r > r and δ → 1, α∗n (C
e
n)< αn(C

e
n). In other words, given r > r, there

exists a risk correlation threshold δ such that when δ > δ , α∗n (C
e
n) < αn(C

e
n) and the catastrophe

insurance market fails to exist.

In the PR case, when the insurer holds zero capital, its expected profit is positive when the

premium is set at individuals’ maximum willingness to pay α∗p(0):

Π(α∗p(0),Cp = 0,Rp = 1) =
∫ xp

0
[α∗p(0)−Mp− xl + Ire(x)] f (x)dx

= α
∗
p(0)−Mp−

∫ xp

0
[xl− Ire(x)] f (x)dx−

∫ 1

xp

[α∗p(0)−Mp] f (x)dx

> E[xI(x)]−Mp−
∫ xp

0
[xl− Ire(x)] f (x)dx−

∫ 1

xp

[α∗(0)−Mp] f (x)dx

= 0,
(B1-3)

where the inequality α∗p(0) > E[xI(x)] follows from individuals’ risk averse. Given the optimal

capital Ce
p, the insurer’s expected profit with the premium at individuals’ maximum willingness to

pay α∗p(C
e
p) is strictly higher than that with the minimum acceptable premium α p(C

e
p):

Π(α∗p(C
e
p),C

e
p,Rp = 1)≥Π(ηα

∗
p(C

e
p)+(1−η)α̃,Ce

p,Rp = 1)

= ηΠ
∗
p

≥ ηΠ(α∗p(0),Cp = 0,Rp = 1)

≥ 0

= Π(α p(C
e
p),C

e
p,Rp = 1),

(B1-4)

where the first inequality follows from that the insurer’s expected profit is increasing in the in-

surance premium and the equal sign holds if and only if η = 1; the first equality is the insurer’s
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binding profitability constraint; the second inequality follows from that Π∗p is the maximum ex-

pected profit of a monopolistic insurer, which is the highest expected profit that the insurer is able

to earn; the last inequality follows from Eq.(B1-3) and the equal sign holds if and only if η = 0; the

last equality follows from that the insurer’s expected profit is zero at minimum acceptable premium

α p(C
e
p). Given that the equal signs of the first and last inequality do not hold simultaneously, we

have Π(α∗p(C
e
p),C

e
p,Rp = 1)> Π(α p(C

e
p),C

e
p,Rp = 1) and thus α∗p(Cp)> α p(Cp).

Similarly, in the GR case, we can prove that the insurer’s expected profit with the premium at

individuals’ maximum willingness to pay α∗(Ce,T e) is strictly higher than that with the premium

at the insurer’s minimum acceptable premium α(Ce,Me), i.e., Π(α∗(Ce,T e),Ce,R = 1,Me) >

Π(α(Ce,Me),Ce,R = 1,Me) and α∗(Ce,T e)> α(Ce,Me).

Appendix B2: Proof of Proposition 2

The proof is in two steps: (i) private reinsurance improves expected social utility compared

with the equilibrium with no reinsurance. (ii) government reinsurance improves expected social

utility compared with the equilibrium with private reinsurance and achieves Pareto improvement

in some competitive markets.

Step (i): Comparing Eqs.(A2-2,A2-3) with Eqs.(A1-5,A1-6), we have α∗n = α∗p and C∗n =C∗p+

K−Mp. Thus, in a monopolistic market,

Π
∗
p =

∫ x∗p

0

[
α
∗
p−Mp− xl + Ire(x)

]
f (x)dx− [1−F(x∗p)]C

∗
p− rC∗p

=
∫ x∗n

0
(α∗n − xl) f (x)dx− [1−F(x∗n)]C

∗
n− rC∗n + r(K−Mp)

> Π
∗
n,

(B2-1)

where the inequality follows from K−Mp > 0.According to Eq.(A1-13) and Eq.(A2-9), the in-

surer’s expected profit is Πe
n = ηΠ∗n and Πe

p = ηΠ∗p in the NR and PR equilibriums, respectively.

Therefore, when η = 0, Πe
n = Πe

p = 0, and when 0 < η ≤ 1, together with Eq.(B2-1), Πe
n < Πe

p.

Therefore, we have Πe
n ≤Πe

p.

Denote Uip(Cp) each individual’s expected utility in the PR case when the insurer holds capital

Cp and sets the premium at ηα∗p(Cp)+(1−η)α̃ . We can prove that when the insurer holds capital

at Cp = Ce
n− (K−Mp) in the PR case, each individual’s expected utility equals to that in the NR

equilibrium, Uip(Ce
n− (K−Mp)) =Ue

in and the insurer’s expected profit is higher than ηΠ∗p:

Πp(αp(η),Ce
n− (K−Mp),Re

p = 1) = ηΠ
∗
p +(1−η)r(K−Mp)≥ ηΠ

∗
p. (B2-2)
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Required by the profitability constraint, the insurer should earn an expected profit no more than

ηΠ∗p and thus should hold capital more than Ce
n− (K−Mp):

Ce
p ≥Ce

n− (K−Mp), and the equal sign holds iff η = 1. (B2-3)

Each individual’s expected utility in the PR case Uip(Cp) is increasing in Cp:

dUip(Cp)

dCp
= η

∂Uip(Cp)

∂αp(η)

∂α∗p(Cp)

∂Cp
+

∂Uip(Cp)

∂Cp
≥ 0, and the equal sign holds iff η = 1. (B2-4)

In the PR equilibrium, each individual’s expected utility is Ue
ip = Uip(Ce

p). Given Eqs.(B2-

2,B2-4,B2-5), each individual’s expected utility in the NR equilibrium is lower than that in the PR

equilibrium, i.e., Ue
in ≤Ue

ip (strictly holds when 0≤ η < 1).

In conclusion, Πe
n ≤ Πe

p (strictly holds when 0 < η ≤ 1), Ue
in ≤Ue

ip (strictly holds when 0 ≤

η < 1) and thus V e
n <V e

p .

Step (ii): We compare the GR and PR equilibriums. The expected social utility in the PR

equilibrium equals to that in the GR case when T = 0, i.e., V e
p =V (0). Since T e = argmaxTV (T )>

0, V (0)<V (T e) and V e
p <V e.

According to Eq.(A2-9) and Eq.(A3-17), in the PR and GR equilibriums, the insurer’s expected

profit is Πe
p = ηΠ∗p and Πe = ηΠ∗(Me,T e), respectively. Therefore when η = 0, Πe

p = Πe =

0. When 0 < η ≤ 1, together with Π∗p < Π∗(Me,T e), we have Πe
p < Πe. Overall, the insurer’s

expected profit in the PR equilibrium is lower than that in the GR equilibrium, i.e., Πe
p ≤Πe.

Next, we compare individuals’ expected utilities in the PR and GR equilibriums. In a perfectly

competitive market where η = 0, Π∗∗p = Π∗∗ = 0 and thus V e
p = Ue

ip and V e = Ue
i . Recall that

V e
p <V e, and thus

Ue
ip <Ue

i when η = 0. (B2-5)

In a monopolistic market where η = 1, individuals end up with uninsured expected utility in the

PR and GR equilibriums, i.e. Ue
ip = pU(−l) and Ue

i = pU(−T e− l)+ (1− p)U(−T e). Because

pU(−l)> pU(−T e− l)+(1− p)U(−T e), we have

Ue
ip >Ue

i when η = 1. (B2-6)

Given Eq.(B2-5) and Eq.(B2-6) and according to the continuity of η , there exists η such that when

0≤ η ≤ η , U∗ip ≤U∗i and the Pareto improvement is achieved. When η < η ≤ 1, U∗ip >U∗i .
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Appendix B3: Proof of Proposition 3

First we compare the insurer’s default threshold in the NR and PR equilibrium. Comparing

Eqs.(A2-2,A2-3) with Eqs.(A1-5,A1-6), we have α∗n = α∗p and C∗n = C∗p +K −Mp. Thus, in a

monopolistic market where η = 1, x∗p =
1
l [α
∗
p +C∗p +K−Mp] =

1
l (α

∗
n +C∗n) = x∗n. In competitive

markets where 0≤ η < 1,

xe
p =

1
l
[ηα

∗
p(C

e
p(η))+(1−η)α̃ +Ce

p(η)+K−Mp]

>
1
l
[ηα

∗
n (C

e
n(η))+(1−η)α̃ +Ce

n(η)]

= xe
n,

(B3-1)

where the inequality follows from Eq.(B2-3) and α∗p(C
e
p(η)) is increasing in Ce

p(η).

Then we compare the insurer’s default threshold in the PR and GR equilibrium. In a perfectly

competitive market where η = 0, the insurer’s default threshold given any catastrophe tax T is

x∗∗(T ) = 1
l [α̃ +C∗∗(T )+K−E[Ire(x)]+T ]. Taking derivative with respect to T , we have

dx∗∗(T )
dT

=
dC∗∗(T )

dT
+1 > 0, i.e., x∗∗p < x∗∗. (B3-2)

In a monopolistic market where η = 1, the insurer’s default threshold given any catastrophe

tax T is x∗(T ) = 1
l [α
∗(C∗(T ),T )+C∗(T )+K−E[Ire(x)]+T ]. In the PR (GR) equilibrium, the

insurer’s default threshold is x∗p = x∗(0) (x∗ = x∗(T ∗)). Taking derivative with respect to T , we

have, if individuals exhibit CARA,
dx∗(T )

dT =
∂α∗(C∗(T ),T )

∂T
+

∂α∗(C∗(T ),T )
∂C

× ∂C∗(T )
∂T

+
∂C∗(T )

∂T
+1 = 0, (B3-3)

where ∂α∗(C∗(T ),T )
∂T = ∂α∗(C∗(T ),T )

∂C and ∂C∗(T )
∂T = −1. Thus, if individuals exhibit CARA prefer-

ence,we have x∗p = x∗ .Similarly, we can prove that x∗p < x∗ if individuals exhibit DARA preference

and x∗p > x∗ if individuals exhibit IARA preference.

Finally, according to the continuity of η , if individuals exhibit DARA or CARA, ∀0≤ η ≤ 1,

xe
p ≤ xe. If individuals exhibit IARA, there exists 0 < η̃ < 1 such that when 0 ≤ η < η̃ , xe

p < xe

and when η̃ ≤ η ≤ 1, xe
p ≥ xe.
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Appendix C: Proof of Impact Channels and Pricing of Government Reinsurance

Appendix C1: Proof of Product Quality Channel

Recall that the insurer’s optimal product quality capital Ce
quality(T ;η) given any T is derived

from the binding profitability constraint driven by the competitive pressure:∫ xe

0
[αe(T )−M− xl + Ire(x)] f (x)dx−[1−F(xe)+r][Ce

quality(T ;η)+Ce
premium(T ;η)]=ηΠ

∗(M,T ).

(A3-7)

In the PR and GR equilibriums, the insurer’s optimal product quality capital is Ce
quality,p(η) =

Ce
quality(T = 0;η) and Ce

quality(η) =Ce
quality(T = T e;η), respectively.

In a monopolistic market where η = 1, the insurer is not subject to a profitability constraint

and thus holds zero product quality capital, i.e., Ce
quality,p(η = 1) =Ce

quality(η = 1) = 0.

In a competitive market where 0≤ η < 1, the insurer in the GR case holds the product quality

capital at the level of the PR equilibrium, i.e., holding capital Ĉ = Ce
quality,p(η)+Ce

premium(η), it

will earn an expected profit higher than ηΠ∗(Me,T e):

Π(α(η),Ĉ,Re = 1,Me)−ηΠ
∗(Me,T e)

>
∫ T e

0

(
ηF(x̂)

∂

∂C
α
∗(Ĉ,T )− [1−F(x̂)]− r

)
∂

∂T
Ce

premium(T ;η)dT

>0,

(C1-1)

where x̂ = 1
l [α
∗(Ĉ,T )+ Ĉ +K−M]. Π(α(η),Ĉ,R = 1,Me) > ηΠ∗(Me,T e) follows from that

ηF(x̂) ∂

∂C α∗(Ĉ,T )− [1−F(x̂)]− r < 0 and ∂

∂T Ce
premium(T ;η)< 0. Together with the profitability

constraint, i.e., Π(α(η),Ce(η),Re = 1,Me) = ηΠ∗(Me,T e), we have

Π(α(η),Ĉ,Re = 1,Me)> Π(α(η),Ce(η),Re = 1,Me), (C1-2)

where Ĉ >Ce
premium(η), Ce(η)>Ce

premium(η). Since Ĉ =Ce
quality,p(η)+Ce

premium(η)≥Ce
premium(η)

and the insurer’s expected profit Π(α(η),C,R = 1,Me) is decreasing in capital C when C ≥

Ce
premium(η), we have Ĉ <Ce(η). Recall that Ĉ =Ce

quality,p(η)+Ce
premium(η) and Ce(η)=Ce

quality(η)+

Ce
premium(η), and thus we have Ce

quality,p(η)<Ce
quality(η).

Appendix C2: Proof of Capital Cost Channel

Recall that the insurer’s optimal premium income capital Ce
premium(T ;η) given any T is the

capital that maximizes the insurer’s expected profit without considering the profitability constraint:
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d
dC

Π(ηα
∗(Ce

premium(T ;η),T )+(1−η)α̃,Ce
premium(T ;η),Re = 1,M)

=ηF(x̂)
d

dC
α
∗(Ce

premium(T ;η),T )− [1−F(x̂)+ r] = 0.
(C2-1)

In a perfectly competitive market where η = 0, the marginal benefits of holding premium

income capital is zero, i.e., ηF(x̂) d
dC α∗(Ce

premium(T ;η),T ) = 0 but its marginal cost is positive,

i.e., 1−F(x̂)+ r > 0. Therefore, the insurer holds zero premium income capital in the perfectly

competitive market, i.e., Ce
premium,p(η) =Ce

premium(η) = 0 when η = 0.

In a market with imperfect competition and in a monopolistic market where 0 < η ≤ 1, accord-

ing to the Implicit Function Theorem, taking derivative with respect to T in Eq.(C2-1) yields

dCe
premium(T ;η)

dT
=−

d2

dCdT Π(α∗(Ce
premium(T ;η),T ),T,Ce

premium(T ;η),Re = 1,M)

d2

dC2 Π(α∗(Ce
premium(T ;η),T ),T,Ce

premium(T ;η),Re = 1,M)
< 0, (C2-2)

where the denominator d2Π

dC2 < 0 follows from that Ce
premium(T ;η) maximizes the insurer’s expected

profit and the numerator
d2Π

dCdT
=

d
dα∗(Ce

premium(T ;η),T )
dΠ

dC
×

∂α∗(Ce
premium(T ;η),T )

∂T
+

∂

∂T
dΠ

dC
< 0. (C2-3)

In the PR and GR equilibriums, the insurer’s optimal premium income capital is Ce
premium,p(η)=

Ce
premium(T = 0;η) and Ce

premium(η) = Ce
premium(T = T e;η), respectively. Given Eq.(C2-2) and

T e > 0, we have Ce
premium,p(η)<Ce

premium(η) when 0 < η ≤ 1.

Appendix C3: Proof of Pricing of Government Reinsurance

First, we prove that the government reinsurance is risk-based. According to the government’s

binding budget constraint, we have Me +T e = E[Ire(x)] =
∫ K+K

l
K
l

(xl−K) f (x)dx+
∫ 1

K+K
l

K f (x)dx.

With some algebra, we have

∂ (Me +T e)

∂ l
=
∫ K+K

l

K
l

x f (x)dx > 0, (C3-1)

∂ (Me +T e)

∂K
= F

(
K
l

)
−F

(
K +K

l

)
< 0, (C3-2)

∂ (Me +T e)

∂K
= 1−F

(
K +K

l

)
> 0. (C3-3)

Next, we prove that the government reinsurance is affordable, i.e., αe−Me > 0:

0≤Π
e =

∫ xe

0
[αe−Me− xl + Ire(x)] f (x)dx− [1−F(xe)]Ce− rCe <

∫ xe

0
(αe−Me) f (x)dx.

(C3-4)
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Next, we prove that the government reinsurance is long-term sustainable with a cost loading

r′ ≥ 0. Assuming that the share of catastrophe-hit population in each period x1,x2, ...,xt are inde-

pendent and identically distributed, Ire(x1), Ire(x2), ..., Ire(xt) are also independent and identically

distributed. With the Law of Large Numbers, if T ′+M′ = (1+ r′)E[Ire(xt)], then
1
t

t

∑
1
[T ′+M′− (1+ r′)Ire(xt)]→ T ′+M′− (1+ r′)E[Ire(xt)] = 0, as t→ ∞. (C3-5)

If the government budget is ex-ante binding in each period, i.e., T ′+M′= (1+r′)E[Ire(xt)], the

government reinsurance can break even and be sustainable in t periods (as t is sufficiently large)

ex post.

Consider a loan interest rate r0 > 0 and a reserve investment return rate r1 > 0, according to

the Law of Large Numbers, the t-period average surplus of the government reinsurance is
1
t

t

∑
1
{(1+ r0)min{0, [T +M− Ire(xt)]}+(1+ r1)max{0, [T +M− Ire(xt)]}}

=
1
t

t

∑
1
{(1+ r1)[T +M− Ire(xt)]+(r0− r1)min{0, [T +M− Ire(xt)]}}

→(1+ r1){T +M−E[Ire(x)]}+(r0− r1)E [min{0, [T +M− Ire(xt)]}] as t→ ∞,

(C3-6)

where E [min{0, [T +M− Ire(xt)]}] < 0 and T +M− E[Ire(x)] = 0 following from the binding

government budget.

If r0 < r1, the government reinsurance earns a surplus in t periods, i.e., (r0− r1)E[min{0, [T +

M− Ire(xt)]}] > 0. Thus, without the concern about the long-term sustainability, the government

could ease the burden of individuals and the insurer by charging a reinsurance price lower than the

expected loss, i.e., T +M < E[Ire(x)].

If r1 = r0, the government reinsurance breaks even in t periods, i.e., (r0− r1)E[min{0, [T +

M− Ire(xt)]}] = 0. The government reinsurance program is long-term sustainable.

If r1 < r0, the government reinsurance would have a deficit in t periods, i.e., , (r0− r1)E[T +

M− Ire(x)|Ire(x)≥ T +M]< 0. However, there exists a r′ > 0 such that

T +M−E[Ire(x)]+
r0− r1

1+ r1
E[T +M− Ire(x)|Ire(x)≥ T +M] = T +M−(1+r′)E[Ire(x)], (C3-7)

the left hand side of Eq.(C3-7) is independent of r′ and the right hand side is decreasing in r′,

strictly larger than left hand side when r′ = 0. In other words, if the investment return rate r1 is

lower than the interest rate r0, it is equivalent to have a cost loading r′ in each period, which we

have proved its sustainability.
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Appendix D: Proof and Additional Results for COVID-19 Applications

Appendix D1: Additional Calibration Results for COVID-19

Figure D1-1: COVID-19 and Expected Social Utility when η = 0.75

Figure D1-2: COVID-19 and Expected Social Utility when η = 0.5

Figure D1-3: COVID-19 and Expected Social Utility when η = 0.25
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Appendix D2: Proof of Corollary 1

Corollary 1.1

We solve the equilibrium using backward induction and start from period 2. In period 2, the

three decision-makers repeat the single-period game as shown in Appendix A3. Since there is no

cost for open decision such as intensifying pandemic , it is always better for businesses to open

and buy pandemic insurance to share risks in period 2. We denote the period-2 expected utility in

the equilibrium after open (close) in period 1 as U2i(q) (U2i(p)) .

In period 1, we derive the decisions of the three decision-makers in the equilibrium with back-

ward induction and start from businesses. If businesses choose to open in period 1, it is easy to

prove that buying pandemic insurance brings them higher expected utility and businesses will thus

buy pandemic insurance. Given any catastrophe tax T1, primary premium α1 and the insurer’s

capital C1, the period-1 expected utility with pandemic insurance is

U1i(q)=
∫ xq

0
xU (−α1−T1) f (x)dx+

∫ 1

xq

xU
(
−α1−T1− l +

xq

x
l
)

f (x)dx+
∫ 1

0
(1−x)U(−α1−T1) f (x)dx.

(D2-1)

If businesses choose to close in period 1, they bear the losses l themselves and thus the period-1

expected utility is U1i =U(−l−T1). It is easy to prove that period-1 expected utility with pandemic

insurance is higher than that without insurance, i.e., U1i(q)>U1i for any T1≥ 0, 0 <α1 < l, C1≥ 0

and q< 1. But whether business open and buy insurance in period 1 or close in period 1 depends on

inter-temporal expected utility, the sum of period-1 expected utility and period-2 expected utility,

which is related to inter-temporal correlation q. Next, we consider two extreme cases where q = p

and q = 1.

With zero inter-temporal correlation, i.e., q = p, businesses’ period-2 expected utility is in-

dependent with their decisions in period 1, i.e., U2i(q) = U2i(p). Thus, businesses only need to

consider their period-1 expected utility when making decisions. Businesses have higher period-1

expected utility if they choose to open and buy the insurance, i.e., U1i(q) > U1i, and thus in the

equilibrium when q = p, businesses choose to open and buy the insurance in period 1 and achieve

higher inter-temporal expected utility, i.e.,

U1i(q)+U2i(q)>U1i +U2i(p), when q = p. (D2-2)

With highest inter-temporal correlation, i.e., q = 1, the pandemic will cause a certain losses l to

businesses in each period once they open, i.e., ql = [q2+(1−q)p]l = l. Given any catastrophe tax
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T1, primary premium α1 and the insurer’s capital C1, if businesses choose to open in period 1,their

period-1 expected utility is

U1i(q) =U(−l−α1−T1 + xql) =U(−l +C1), (D2-3)

where xql = α1 +C1 + K −M1 and M1 + T1 = E[Ire(x)] = K. The insurer’s expected profit is

−(1+ r)C1 because the loss l is certain to occur and the insurer pays out all its capital. Thus, in

the equilibrium, the insurer will hold zero capital, i.e., C1 = 0 and businesses’ period-1 expected

utility becomes U1i(q) = U(−l). Since businesses’ expected utility and the insurer’s expected

profit are both independent with T1, in the equilibrium, the optimal catastrophe tax in period 1

follows T1 = 0 which yields U1i = U(−l−T1) = U(−l). In sum, we have U1i(q) = U1i = U(−l)

and U2i(q) < U2i(p). Thus, in the equilibrium when q = 1, it is better for businesses to close in

period 1, i.e.,

U1i(q)+U2i(q)<U1i +U2i(p), when q = 1. (D2-4)

Given Eq.(D2-2) and Eq. (D2-4), moreover U1i(q) +U2i(q) decreases with q and q is con-

tinuous, there exists q̂ such that in the equilibrium when p ≤ q ≤ q̂, businesses choose to open

and buy pandemic insurance in period 1, i.e., U1i(q)+U2i(q)≥U1i +U2i(p) and when q̂ < q≤ 1,

businesses choose to close in period 1, i.e., U1i(q)+U2i(q)<U1i +U2i(p).

Corollary 1.2

As shown in the proof of Corollary 1.1, we only need to consider two possible paths: (1)

businesses keep opening and buy pandemic insurance in both periods; (2) businesses close without

pandemic insurance in period 1, but open and buy pandemic insurance in period 2. We denote

them as Path 1 and Path 2 hereafter.

To prove corollary 1.2, we first make some definitions.We denote the catastrophe tax in period

1 and 2 as T1 and T2 respectively. In both periods, the reinsurance coverage is K. In Path 1, we

denote the insurer’s expected profit in the equlibrium in period 1 and period 2 given any T1, T2

and K as Π1(T1,K,q) and Π2(T2,K,q) respectively; and denote businesses’ expected utility in the

equilibrium in period 1 and 2 given any T1, T2 and K as U1(T1,K,q) and U2(T2,K,q) respectively.

In Path 2, the insurer’s period-1 expected profit is 0 and businesses’ period-1 expected utility is

U(−l− T1) given any T1. We denote the insurer’s period-2 expected profit as Π2(T2,K, p) and

businesses’ period-2 expected utility as U2(T2,K, p), the same part in Path 1 and 2. We denote the

threshold of inter-temporal correlation for market existence in period 1 given any T1, T2 and K as
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q̂(T1,T2,K). Hence, q̂p = q̂(0,0,K) stands for the threshold in the private reinsurance. Note that

q̂(T1,T2,K) makes businesses indifferent between Path 1 and 2, i.e.,

U1i(T1,K, q̂(T1,T2,K))+U2i(T2,K, q̂(T1,T2,K)) =U(−l−T1)+U2i(T2,K, p), (D2-5)

And the insurer is indifferent between Path 1 and 2 with q̂(T1,T2,K) :

Π1(T1,K, q̂(T1,T2,K))+Π2(T2,K, q̂(T1,T2,K)) = Π2(T2,K, p). (D2-6)

Then we prove that ∂ q̂p

∂K > 0 and ∂ q̂
∂K > 0 in a monopolistic market where η = 1. Businesses’

period-2 expected utility in Path 1 and 2 are U2i(T2,K,q) = [q2 +(1−q)p]U(−l−T2)+ [1−q2−

(1−q)p]U(−T2) and U2i(T2,K, p)= pU(−l−T2)+(1− p)U(−T2), both of which are independent

with K. Thus, for any Ka < Kb, we have

U2i(T2,Ka,q) =U2i(T2,Kb,q) and U2i(T2,Ka, p) =U2i(T2,Kb, p). (D2-7)

In period 2, the monopolistic insurer use the net coverage of reinsurance as one-to-one substi-

tute to it capital, i.e., ∂C2(T2,K)

∂ (K−E[Ire(x)])
= −1, which is derived from Eq. (A3-3) by taking derivative

with respect to K−E[Ire(x)]. Thus, we have
∂Π2(T2,K,q)

∂K
=

∂Π2(T2,K,q)
∂ (K−E[Ire(x)])

× ∂ (K−E[Ire(x)])
∂K

= r× ∂ (K−E[Ire(x)])
∂K

. (D2-8)

Similarly, we have ∂Π2(T2,K,p)
∂K = r× ∂ (K−E[Ire(x)])

∂K . In turn, we have ∂Π2(T2,K,q)−∂Π2(T2,K,p)
∂K = 0.

Thus, for any Ka < Kb, we have

Π2(T2,Ka,q)−Π2(T2,Ka, p) = Π2(T2,Kb,q)−Π2(T2,Kb, p). (D2-9)

In period 1, given any T1 and K, the monopolistic insurer set the premium at businesses’ max-

imum willingness to pay α∗1 (C1,T1,K) such that businesses are indifferent between Path 1 and

2, and holds optimal capital C1(T1,K) to maximize its expected profit. Thus, when p ≤ q ≤

q̂(T1,T2,K), we have

U1i(T1,K,q)+ [q2 +(1−q)p]U(−l−T2)+ [1−q2− (1−q)p]U(−T2)

=U(−l−T1)+ pU(−l−T2)+(1− p)U(−T2),
(D2-10)

F(xq)
∂

∂C1
α
∗
1 (C1(T1,K),T1,K) = 1−F(xq)+ r, (D2-11)
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where

U1i(T1,K,q) =
∫ xq

0
xU
(
−α
∗
1 (C1(T1,K),T1,K)−T1

)
f (x)dx

+
∫ 1

xq

xU
(
−α

∗
1 (C1(T1,K),T1,K)−T1− l +

xq

x
l
)

f (x)dx

+
∫ 1

0
(1− x)U(−α

∗
1 (C1(T1,K),T1,K)−T1) f (x)dx.

(D2-12)

The monopolistic insurer’s period-1 expected profit is

Π1(T1,K,q)=
∫ xq

0
[α∗1 (C1(T1,K),T1,K)+T1−E[Ire(x)]−xl+Ire(x)] f (x)dx−[1−F(xq)+r]C1(T1,K,q).

(D2-13)

Taking derivative with respect to K and together with ∂C1(T1,K)

∂ (K−E[Ire(x)])
= −1, ∂α∗1 (C1(T1,K),T1,K)

∂C1(T1,K)
=

∂α∗1 (C1(T1,K),T1,K)

∂ (K−E[Ire(x)])
, and ∂U1i(T1,K,q)

∂C1(T1,K)
= ∂U1i(T1,K,q)

∂ (K−E[Ire(x)])
and with some algebra, we have

∂Π1(T1,K,q)
∂K

= r× ∂ (K−E[Ire(x)])
∂K

> 0, (D2-14)

∂U1i(T1,K,q)
∂K

= 0. (D2-15)

For any given Ka < Kb, according to Eq.(D2-14) and Eq.(D2-15), we have

Π1(T1,Ka,q)< Π1(T1,Kb,q) and U1i(T1,Ka,q) =U1i(T1,Kb,q). (D2-16)

Therefore, given Kb, Ka < Kb and q = q̂(T1,T2,Ka), the insurer earns higher expected profit in

Path 1:

Π1(T1,Kb, q̂(T1,T2,Ka))+Π2(T2,Kb, q̂(T1,T2,Ka))−0−Π2(T2,Kb, p)

=Π1(T1,Kb, q̂(T1,T2,Ka))+Π2(T2,Ka, q̂(T1,T2,Ka))−Π2(T2,Ka, p)

>Π1(T1,Ka, q̂(T1,T2,Ka))+Π2(T2,Ka, q̂(T1,T2,Ka))−Π2(T2,Ka, p)

=0,

(D2-17)

where the first equality follows Eq.(D2-9), the first inequality follows Eq.(D2-16), and the last

equality follows Eq.(D2-6). And individuals are indifferent between Path 1 and 2:

U1i(T1,Kb, q̂(T1,T2,Ka))+U2i(T2,Kb, q̂(T1,T2,Ka))−U(−l−T1)−U2i(T2,Kb, p)

=U1i(T1,Ka, q̂(T1,T2,Ka))+U2i(T2,Ka, q̂(T1,T2,Ka))−U(−l−T1)−U2i(T2,Ka, p)

=0,

(D2-18)

where the first equality follows Eq.(D2-7) and Eq.(D2-16), and the second equality follows Eq.(D2-

5). Since q̂(T1,T2,Kb) should satisfy Eq.(D2-5) and Eq.(D2-6), we have q̂(T1,T2,Ka)< q̂(T1,T2,Kb).

That is, for any given Ka < Kb, we have q̂(T1,T2,Ka) < q̂(T1,T2,Kb) when η = 1. Equivalently,
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we have ∂ q̂p

∂K > 0.

Next, we prove that q̂p > q̂ in a monopolistic market where η = 1. In the government rein-

surance case when q = q̂, the government’s optimal tax in period 1 follows T1 = 0, because the

expected social utility decreases with T1, i.e.,

V1 +V2 =U1i(T1,K, q̂(T1,T2,K))+U2i(T2,K, q̂(T1,T2,K))+Π1(T1,K, q̂(T1,T2,K))+Π2(T2,K, q̂(T1,T2,K))

=U(−l−T1)+U2i(T2,K, p)+Π2(T2,K, p)
(D2-19)

decreases with T1, where the equality follows from Eq.(D2-5) and Eq.(D2-6).T1 = 0 definitely

holds in the private reinsurance case. Thus, we compare q̂p and q̂ by focusing on T2 only. Busi-

nesses’ period-2 expected utility in Path 1 and 2 are U2i(T2,K,q) = [q2 +(1− q)p]U(−l−T2)+

[1−q2− (1−q)p]U(−T2) and U2i(T2,K, p) = pU(−l−T2)+(1− p)U(−T2) respectively.Taking

derivative with T2, we have
∂ [U2i(T2,K,q)−U2i(T2,K, p)]

∂T2
=−q(q− p)U ′(−l−T2)− [1−q(q− p)]U ′(−T2)< 0, (D2-20)

and thus, given ant T2 > 0,

U2i(T2,K,q)−U2i(T2,K, p)<U2i(0,K,q)−U2i(0,K, p). (D2-21)

Thus, given any T2 > 0 and q = q̂p, it is better for businesses to close proactively in period 1, i.e.,

U1i(0,K, q̂p)+U2i(T2,K, q̂p)−U(−l)−U2i(T2,K, p)

<U1i(0,K, q̂p)+U2i(0,K, q̂p)−U(−l)−U2i(0,K, p)

=0,

(D2-22)

where the inequality follows from Eq.(D2-21).That is ,the market with government reinsurance

cannot survive with the threshold of private reinsurance case. Thus, the upper threshold for market

existence in the government reinsurance case q̂ is lower than q̂p in a monopolistic market when

η = 1.

In conclusion, when η = 1, we have ∂ q̂p

∂K > 0, ∂ q̂
∂K > 0, and q̂p > q̂. Thus, there must exist an

interval ή < η ≤ 1 such that ∂ q̂p

∂K > 0, ∂ q̂
∂K > 0 and q̂p > q̂ still hold.

Corollary 1.3

The proof is similar to the proof of Proposition 2 in Appendix B2.
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Corollary 1.4

We first consider the condition where the market exists under moral hazard. Given any pre-

mium α1, the insurer’s capital C1 and tax T1 in period 1, if businesses buy pandemic insurance

and then close proactively in period 1, their period-1 expected utility follows U(−α1−T1− l +

xql) = U(−l +C1). If businesses open with pandemic insurance, the period-1 expected utility

is U1i(T1,K,q)+U2i(T2,K, q̂). Note that the pandemic insurance market fails if businesses close

proactively but with insurance because of the insurer’s default. Thus, the market exists when it is

better for businesses with pandemic insurance to open rather than closing proactively in period 1,

i.e.,

U1i(T1,K,q)+U2i(T2,K, q̂)>U(−l +C1)+U2i(T2,K, p), (D2-23)

Meanwhile, it is better for the insurer to sell pandemic insurance rather than exit the market in

period 1, i.e.,

Π1(T1,K,q)+Π2(T2,K, q̂)> Π2(T2,K, p). (D2-24)

With the conditions above, the market exists in the absence of moral hazard because businesses

achieve higher expected utility from opening in period 1, i.e.,

U1i(T1,K,q)+U2i(T2,K, q̂)≥U(−l +C1)+U2i(T2,K, p)

>U(−l)+U2i(T2,K, p),
(D2-25)

and the insurer achieves higher expected profit from opening in period 1 as Eq.(D2-24) holds.

Thus, we have [p, q̂mh]⊂ [p, q̂], equivalently, q̂mh < q̂.

Appendix D3: Proof of Corollary 2

Corollary 2.1

First, the proof for PRIA is shown in Appendix B1. For BCPP, the minimum acceptable pre-

mium is αBCPP = pl. Since business are risk averse, their maximum willingness to pay is higher

than the expected losses (the minimum acceptable premium), i.e., α∗BCPP > pl = αBCPP.

Corollary 2.2

In a perfectly competitive market where η = 0, the insurer’s expected profit is zero, i.e.,

Πe
PRIA = 0. Since BCPP offers the insurance in highest quality (i.e., zero default probability) and

charges at fair premium, individuals has higher expected utility in the BCPP case, i.e., Ue
PRIA <
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Ue
BCPP. Thus, we have

V e
PRIA−V e

BCPP < 0, when η = 0. (D3-1)

In a monopolistic market where η = 1, we have

V e
PRIA−V e

BCPP > 0, when η = 1, (D3-2)

which follows from
(
V e

PRIA−V e
BCPP

)
|p→0 = 0 and

∂(V e
PRIA−V e

BCPP)
∂ p |p→0 > 0. Given Eq.(D3-1) and

Eq.(D3-2) and according to the continuity of η , there exists 0 ≤ η̂ ≤ 0 such that V e
PRIA ≤ V e

BCPP

when 0≤ η ≤ η̂ and V e
PRIA >V e

BCPP when η̂ < η ≤ 1.

Corollary 2.3

Given p < K
tl , government insurance faces higher deficit probability:

DPe
BCPP = Prob(

t

∑
i=1

xil > t pl)> Prob(
t

∑
i=1

xil > K)> Prob(
t

∑
i=1

Ire(xi)l > 0)> Prob

(
t

∑
i=1

Ire(xi)l > tE[Ire(x)]

)
= DPe

PRIA,

(D3-3)

where the first inequality follows from p < K
tl .Given that government faces a deficit, i.e., ∑

t
i=1 xil >

t pl (∑t
i=1 Ire(xi)l > tE[Ire(x)]), the government insurance faces higher deficit severity:

DSe
BCPP =

t

∑
i=1

xil− t pl >
t

∑
i=1

xil−K >
t

∑
i=1

Ire(xi)l− tE[Ire(x)]

= DSe
PRIA,

(D3-4)

where the first inequality follows from p< K
tl and the second inequality follows from ∑

t
i=1 Ire(xi)l >

tE[Ire(x)].

Corollary 2.4

First we consider the case of BCPP. Supposing q > p, in period 2, businesses will open and

buy the government insurance in the equilibrium, the government’s budget constraint is binding

and thus the government insurance is delivered in fair price. Businesses’ period-2 expected utility

is U(−[q2 +(1− q)p]l) when they open in period 1 and U(−pl) when they close proactively in

period 1. Given any premium of BCPP in period 1 αBCPP1 less than loss l, Path 2 brings higher

expected utility to businesses than Path 1 and thus it is always better for businesses to close in

period 1 with q > p, i.e.,

U(−αBCPP1)+U(−[q2 +(1−q)p]l)<U(−αBCPP1)+U(−pl), ∀q > p. (D3-5)

But if that is the case, a certain loss l happens and the government’s budget can not break even
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in period 1 with αBCPP1 < l. However,the government budget constraint must be binding in the

equilibrium and thus we have q̂BCPP = p.

Then we consider the case of PRIA when q = p. Since q = p, we have q2 +(1−q)p = p, i.e.,

businesses’ period-2 expected utility and the insurer’s period-2 expected profit are independent

with businesses’ opening decision in period 1. Thus, both businesses and the insurer consider their

period-1 expected utility/profit when making decisions.The inter-temporal problem degenerates

into our single-period risk-sharing model. As proved in the equilibrium of single-period model

in Appendix A3, the pandemic insurance market always exists with government reinsurance, i.e.,

Path 2 brings higher expected utility to businesses and higher expected profit to the insurer than

Path 1. Thus, we have q̂PRIA > p. Together with q̂BCPP = p, we have q̂BCPP < q̂PRIA.
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Appendix E: Proof of Alternative Government Intervention Policies

Appendix E1: Proof of the RR Case

First, we prove that in a monopolistic market, the insurer always holds zero capital in the RR

case, i.e., C∗rr = 0. Individuals’ maximum willingness to pay α∗rr(Trr) satisfies

U(−α
∗
rr(Trr)−Trr) = pU(−Trr− l)+(1− p)U(−Trr), (E1-1)

suggesting that α∗rr(Trr) is independent of the insurer’s capital Crr, i.e., ∂α∗rr(Trr)
∂Crr

= 0. C∗rr = 0

follows from that holding capital has zero marginal benefit, i.e., F(xrr)
∂α∗rr(Trr)

∂Crr
= 0, but has a

positive marginal cost, i.e., 1−F(xrr)+ r > 0.

Next, we prove α∗CL < α∗rr(0) where α∗rr(0) is individuals’ maximum willingness to pay when

Trr = 0:

U(−α
∗
rr(0)) = pU(−l) =

∫ 1

0
U(−α

∗
CL−T (x)) f (x)dx <U [E(−α

∗
CL−T (x))] =U [−α

∗
CL−E(T (x))].

(E1-2)

Given U ′(·)> 0, we have α∗CL < α∗rr(0).

Next, we prove V e
rr > V e

CL. Following Charpentier and Le Maux’s (2014) setup for the catas-

trophe relief program (the GRel case), we compare V e
rr and V e

CL in a monopolistic market. In the

GRel equilibrium, the insurer holds an exogenous capital CCL > 0 and sets the insurance premium

at individuals’ maximum willingness to pay α∗CL. Because C∗rr = 0 < CCL and α∗rr(0) > α∗CL, the

insurer in the RR case with Trr = 0 earns a higher expected profit than that in the GRel equilibri-

um. In a monopolistic market, individuals’ expected utilities is pU(−l) in both the RR case with

Trr = 0 and the GRel equilibrium. Thus, Vrr(0)>V e
CL, where Vrr(0) is the expected social utility in

the RR case with Trr = 0. Since V e
rr is the optimized expected social utility in the RR equilibrium,

we have V e
rr ≥Vrr(0)>V e

CL.

Finally, we prove V e
rr >V e. Denote V̂rr, Π̂rr, and Ûrr as the expected social utility, the insurer’s

expected profit, and each individual’s expected utility in the RR case when αrr = αe, Crr = Ce

and Mrr = Me. With the same primary catastrophe insurance premium, capital, and reinsurance

premium, the insurer’s expected profit is the same in the RR and GR equilibriums, i.e., Π̂rr = Πe.

In the RR case, the budget constraint of the government is

Trr +Mrr ≥ E[Ire(x)]+
∫ 1

x
(x− x)l f (x)dx. (E1-3)

When Mrr = Me, to meet the above budget constraint, the government need to charge higher

catastrophe tax from individuals to cover the default loss, i.e., Trr = T e +
∫ 1

x (x− x)l f (x)dx. In the
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GR case, individuals bear the default loss while in the RR case, the government covers the default

loss by charging the additional tax Trr−T e, which is the fair value of the default loss. Risk-averse

individuals are better off by transferring the default loss to the government at the fair price, i.e.,

Ûrr >Ue
i . Thus, the expected social utility in the RR case when αrr = αe, Crr =Ce and Mrr = Me

is higher than that in the GR equilibrium, i.e., V̂rr >V e. Since V e
rr is the maximum expected social

utility in the RR case, we have V e
rr ≥ V̂rr >V e.

Appendix E2: Proof of Solvency Regulation

It is straightforward that V e =V e
s (θ) when the maximum acceptable default probability of the

solvency regulation is larger than the insurer’s default probability in the unregulated GR equilibri-

um, i.e., θ ≥ θ e.

When θ < θ e, for ∀ θ2 < θ1 < θ e, we denote T e
si and Me

si (i = 1,2) as the optimal catastrophe

tax and reinsurance premium, and Ce
si as the optimal capital of the insurer with θi as the maximum

acceptable default probability of the solvency regulation. According to Eq.(29), we have Ce
s2 >

Ce
s1 > Ce. Recall that holding capital more than the optimal level Ce in the unregulated GR case

decreases the insurer’s expected profit. Thus, assuming the same reinsurance premium Me
s2 in both

Case 1 and Case 2, the insurer’s expected profit in Case 1 with capital Ce
s1 is higher than that in the

Case 2 with capital Ce
s2:

Π(Ce
s1,M

e
s2;θ1)> Π(Ce

s2,M
e
s2;θ2) = ηΠ

∗(Me
s2,T

e
s2), (E2-1)

where the equality is the binding profitability constraint in Case 2. If the government charges the

reinsurance premium at Me
s2 in Case 1, the insurer’s expected profit will violate the profitability

constraint in Case 1. To lower the insurer’s expected profit such that the profitability constraint is

satisfied, the reinsurance premium in Case 1 should be higher than that in Case 2, i.e., Me
s1 > Me

s2.

Given the binding budget constraint of the government, we have T e
s1 < T e

s2, i.e., ∂T e
s

∂θ
< 0, ∀θ ≤ θ e.

Since ∂V e
s (θ)
∂θ

= dV (T )
dT |T=T e

s ×
∂T e

s
∂θ

and dV (T )
dT < 0 when T > T e, we have ∂V e

s (θ)
∂θ

> 0.
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