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Abstract

This paper is to study the Pareto efficiency of the equilibrium allocation in
OLG models with three production factors: physical capital, labor and natural
resource. We present general sufficient conditions and general necessary condi-
tions for the Pareto efficiency of the equilibrium allocation. Then, the general
results are applied to two cases: the natural resource regeneration function is
linear or quadratic, respectively. In the linear case (with additive log utility
function and CES production function), we prove that there are a continuum of
steady state equilibria, among which, some are Pareto efficient, some are not,
depending on the speed of the resource harvesting, the more slowly, the more
prone to be Pareto efficient. In the quadratic case (with additive log utility func-
tion and Cobb-Douglas production function), we prove that there is a unique
steady state equilibrium, and there is an aggregate capital index (combining the
physical capital and the natural capital), if the labor share is smaller than this
index, then, the equilibrium allocation is Pareto efficient; if the labor share is
bigger than this index, then, it’s Pareto inefficient.
JEL classification: O13; O41; Q20; Q32

Keywords: OLG, dynamic equilibrium, efficiency, natural resources.

1 Introduction

In resource economics, OLG model is one of the typical workhorses in ana-
lyzing the natural resource usage. It’s well known that in the OLG model,
even without public goods, externality, trade friction, market power, the issue
of incomplete information, and the issue of non-convexity, etc, the equilibrium
allocation may or may not be Pareto efficient, so that the first welfare theo-
rem may fail, in other words, Adam Smith’s invisible hand (market mechanism)
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may not work. The resources of inefficiency are thought to include, say, double
infinity, intertemporal trade barrier, etc.

Finding a general powerful criterion to judge the Pareto efficiency of the
equilibrium allocation is meaningful. Through such a criterion, we can reveal
the concrete key elements in the efficiency issue in various situations. Its study
dates back to the fifties of the last century. There is a popular view: the
growth rate of investment vs the rate of return of investment, if the former
is higher, then, inefficient, capital is over-accumulated; if the later is higher,
then, efficient. But, what does the word “investment” mean exactly? If treated
rigorously, especially in the environment with natural resources, it becomes a
very tough problem. Many papers are devoted to it. We first give a quick review
of the literature without natural resources.

Balasko and Shell (1980, 1981a, 1981b) study an OLG pure exchange econ-
omy, under some setup, present a Cass type sufficiency condition (see below)
for a feasible allocation to be Pareto efficient. Wilson (1981), in general OL-
G economies, presents a sufficiency condition, something like the sum of all
discounted outputs is convergent. Abel, Mankiw, Summers, and Zeckhaus-
er(1989)(AMSZ(1989), for short), a seminal paper, in a general random envi-
ronment setting, “proves” the popular view described above. But the proof
of the sufficiency part in AMSZ(1989) is not rigorous. Chattopadhyay (2008)
constructs a counterexample to show that the sufficiency part of AMSZ(1989)
is not correct1. Geanakoplos et al (1991)2, in an OLG pure exchange econ-
omy, presents a sufficient condition that the first generation owns a resource
contributing to income with a strictly positive share bounded away from zero
in every period. Homburg (1992) (Theorem 1) presents a sufficiency condition,
meaning that if there remains nothing valuable at the end of time, then, the
equilibrium allocation is Pareto efficient. Croix et al (2004) (Lemma 2.1), in
the standard Diamond OLG model (Diamond (1965)), presents a sufficiency
condition that the discounted wages converge to 0. Tirole (1985), in an OLG
model with productive and nonproductive assets, in part, demonstrates various
equilibria, some are Pareto efficiency, some are not, it relates to the limit inter-
est rate and the bubbles. Drugeon and Venditti (2010) considers the efficiency
problem for a two-sector OLG model, but this efficiency is the so-called dynamic
efficiency (see below) but not Pareto efficiency, these two concepts are different,
and in general, the issue of Pareto efficiency is quite more difficult than the issue
of dynamic efficiency.

A related problem exists in the so-called Ramsey economy, the simplest
form of which is that there is one-sector, and there is a representative agent
with infinite life3. For such a Ramsey economy, the issue of dynamic efficiency
of any feasible allocation is studied intensively in the literature.

The most famous works are Malinvaud sufficiency condition (the present

1See also Miao(2020).
2see also Geanakoplos(2008), which gives an excellent survey of literature on OLG.
3The more general form is that there are heterogeneous agents with infinite life. See

Becker R.A., Mitra T. (2012). In such a setting, the competitive equilibrium may also be
Pareto inefficient.
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value of capital converges to zero) (Malinvaud (1953)), Cass criterion (the sum of
the reciprocals of the norms of prices is divergent) (Cass(1972)). Benveniste and
Gale D.(1975) extends Cass criterion to a more general case. Mitra (1979) gives
a necessary and sufficient condition for a feasible allocation to be dynamically
inefficient in a quite general setting, including the works of Malinvaud and
Benveniste and Gale as special cases.

An OLG economy can be “contracted” to a Ramsey economy by aggregating
all the people to one representative agent. Then, any feasible allocation in the
OLG economy corresponds to a feasible program in the corresponding Ramsey
economy. The two concepts of efficiency: Pareto efficiency in OLG economy
and the dynamic efficiency in Ramsey economy are related but different. For
more detail, see section 2.

In the Ramsey economy framework, Mitra(1978) presents a Malinvaud type
sufficiency condition for a feasible program in a Ramsey economy with ex-
haustible resources to be dynamically efficient: the total present value of all
assets goes to zero.

Concerning the OLG economy with natural resources, the relevant literature
is as follows.

Rhee (1991) (Proposition 1) shows that an OLG economy with land will
be Pareto efficient if the income share of land does not vanish in the long run.
Mourmouras (1991) considers such an OLG model with a natural resource own-
ing a linear regeneration function and physical capital, but, he only investigates
the problem that how high the regeneration capability of this natural resource
is needed in order to get sustainability, he does not discuss the Pareto efficiency
problem. Olson et al. (1997) proves the Pareto efficiency property of the com-
petitive equilibrium in an OLG model with exhaustible resources but without
physical capital, the factors of production are only natural resource and labor.
Krautkraemer (1999) considers an OLG model with a natural resource owning
logistic regeneration function but without physical capital, he focuses on the
problem of the existence of steady-state equilibrium and its properties, includ-
ing the Pareto efficiency problem of the equilibrium. Farmer(2000) considers an
OLG model with a natural resource owning logistic regeneration function and
physical capital, he also focuses on the problems of the existence of steady-state
equilibria and sustainability, he does not discuss the efficiency problem of the
equilibrium. In addition, he does not consider the technical change and popu-
lation growth. Koskela, et al (2002) extends Olson et al. (1997) and considers
a two-period OLG model with a natural resource but without physical capital,
the utility function is quasi-linear, the regeneration function of the natural re-
source is logistic, and discusses the problems of the existence and the efficiency
of steady-state equilibria. Betty, et al. (2005) discuss sustainability issue and
the Pareto efficiency problem in an OLG model with exhaustible resource and
physical capital, but, they do not prove the existence (and uniqueness) of the
equilibrium, and assume the existence of the equilibrium and assume further-
more that the equilibrium path is a balanced growth path, under all of those
assumptions, they prove that the equilibrium is socially optimal. Farmer et
al. (2017) extend Koskela, et al (2002) in the sense that they consider various
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harvest costs, but the individual utility function is additive log function, the
production function is of Cobb-Douglas without physical capital, the natural
resource regeneration function is logistic function, they discuss the existence
and the efficiency (or inefficiency) of stationary equilibrium.

In this paper, we consider an OLG economy with three factors of production:
physical capital, labor and a natural resource, and present general sufficiency
conditions and general necessary conditions for the equilibrium allocation to be
Pareto efficient, either in terms of wage, or in terms of capital, or total value
of assets. In particular, our necessary condition in terms of wage is new in the
literature, to our knowledge: the present values of wages can not be increasing.
The basic approach of our proof is to construct a Pareto improvement by trans-
ferring consumption from young to old. It’s analogous to the issue of Hilbert’s
Hotel, but is more complicated.

Then, the main results will be applied to two special cases: the natural
resource regeneration function is linear or quadratic. For the linear case with
additive log utility function and Cobb-Douglas production function, we give a
rigorous proof of the existence and uniqueness of the equilibrium, and prove the
Pareto efficiency of the equilibrium allocation without any additional condition.
For the linear case with additive log utility function and general CES production
function, we demonstrate that there are a continuum of steady state equilibria,
some are Pareto efficient, some are not, roughly, the more slowly the resource
is harvested, the better in the sense that it’s more prone to be Pareto efficient.
For the quadratic case (with additive log utility function), we give a proof of the
existence and uniqueness of the equilibrium, and find that the labor share plays
a crucial role, and there is an aggregate capital index combining the physical
capital share and the the natural capital share such that if the labor share is
smaller than this index, then, the equilibrium allocation is Pareto efficient, if
the labor share is bigger than this index, than, the equilibrium allocation is
inefficient.

All the results in these examples coincide with the popular view, which is
“proved” in AMSZ(1989). But, we need to point out some features of AM-
SZ(1989). Although they treat the efficiency issue in a random environment,
but, randomness does not induce any difficulties. In addition, in their main
results, they need the rate of return of investment is either always bigger than
or always smaller than the growth rate of investment. Just as they mentioned in
their paper (AMSZ(1989) pp.12): Neither implication is very helpful in judging
the dynamic efficiency of actual economies, where capital gains and losses cause
the growth rate of the market value of the capital stock sometimes to exceed and
other times to fall short of the safe interest rate. The result here is illuminat-
ing primarily in suggesting that comparisons of the safe interest rate with the
average growth rate generally are not sufficient to resolve the issue of dynamic
efficiency. In this paper, for the necessity part, we only need to compare them
in the limit but not the whole process of the economic development. As to the
sufficiency part, due to the counterexample in Chattopadhyay (2008), we take
a different approach. In addition, we notice that in AMSZ(1989), the produc-
tion is based only on factors such as the savings from human production (rest
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of outputs, after subtracting consumptions) in some previous periods, besides
labor and some random perturbation, which do not include natural resources,
which are “saved” by natural and people jointly from the pervious periods (For
more detail, see section 3). Therefore, AMSZ(1989) can not cover the case with
natural resources.

In general, the resources of inefficiency mentioned above, say, double infinity,
intertemporal trade barrier, are not cleaned up by adding natural resources to
the OLG economy. It needs some other interventions, e.g. from government.
This will be another problem. We do not discuss it in this paper.

The structure od this paper is as follows. In section 2, we set up the model
framework, and give definitions of some fundamental concepts. In section 3, we
present our main results. The following two sections are devoted to linear and
quadratic cases. In section 6, we make the conclusion.

For simplicity, throughout this paper, for any sequence of positive numbers
(xt)t=0,1,2,..., we use the notation x̊t =: xt+1/xt. Then, x̊t−1 is its growth rate.

2 Model setup

Consider a closed two-period competitive OLG economy, which exists in the
time points t ∈ N = {0, 1, 2, ...}.
• Population.
At any time t ∈ N, there are Nt > 0 homogeneous young men, who become

old at t+ 1, and dies after then. At time t = 0, there is the original generation
with population N−1 > 0, each one of which is as old at t = 0 and dies after
then.
• Endowments.
At any time t ∈ N, each one of the young men is only endowed with one

unit of labor, and all the old men of the original generation share evenly the
physical capital K0 > 0 and natural resource S0 > 0. (From now on, K0 and S0

are fixed constants, and are reserved for these meanings throughout this paper)
• Firms.
At any time t ∈ N, there is only one sector, there are many but finite

homogeneous firms with the same technology, the production function of which
is

Y = F t(K,L,R),

where Y is the output of the final good, and K,L,R are the inputs of factors:
the physical capital, labor and natural resource, respectively, F t is a first order
homogeneous function, smooth and concave. The final good can be used for
consumption as well as investment in physical capital. Each firm exists only
one period.
• Utility function.
For any time t ∈ N, anyone of t-generation has a utility function U(at, bt+1),

where at and bt+1 are his consumptions at t and t + 1 , respectively, and U is
strictly increasing wrt to each element, smooth and concave. And the utility
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function for anyone of the original generation (ancestor) is u(b0), where u is
strictly increasing, smooth and concave, and b0 is her consumption at t = 0.
• Natural resource.
The natural resource, as a single entity (although it may be changed by

nature), is harvested and sold, it itself is not divided physically among the
owners. The owners share evenly the property rights on this natural resource,
and hence share evenly the revenue from it1. The natural resource harvesting
is costless.

Concerning the transaction and the motion law of the natural resource, there
are two typical approaches.

Approach one. For any t ∈ N, at the beginning of period t, the natural
resource, the stock of which is St, is owned by all the old men, it is sold to the
young men, the property rights of the natural resource is transfered from the old
to the young. And then, a part of the natural resource, Rt, is harvested and sold
to the firms by the young men, we suppose that in the process of the production
of the final good, the natural resource is depreciated by the depreciation rate
d ∈ [0, 1], therefore, after use for production, the firms return to the young
men the quantity of natural resource (1− d)Rt, and hence, the rest stock of the
resource is St− dRt, which is held by the young men and grows to G(St− dRt)
at the beginning of period t+1. Concerning the depreciation rate of the natural
resource, two extreme cases are: d = 0 and d = 1. The case d = 0 corresponds
to a type of natural resource: land; the case d = 1 corresponds to another type
of natural resource: raw materials, for example, minerals.

The motion law of the natural resource is

St+1 = G(St − dRt), ∀t ∈ N.

Approach two. For any t ∈ N, at the end of period t−1, the natural resource,
the stock of which is St, is owned by all the young men of period t, it grows to
G(St) at the beginning of period t, and the young men become old. Then, the
old men sell it to the young men, the property rights of the natural resource is
transfered from the old to the young. And then, the young men harvest a part of
the natural resource, Rt, and sell it to the firms, the rest of stock, G(St)− dRt,
(where d ∈ [0, 1] is the depreciation rate of the natural resource), is held by the
young men at the end of period t. The motion law of the natural resource is

St+1 = G(St)− dRt, ∀t ∈ N.

Here, G, the regeneration function, is smooth, concave and nonnegative,
defined on [0,∞), satisfying G(0) = 0, G′(0) ∈ (0,∞]. An example is G(x) =
ηxα − θxβ , where η > 0, θ ≥ 0, 0 < α ≤ 1 < β are constants. In particular,
G(x) = x.

The essential results under these two approaches are similar, in this paper,
we take approach one2.

1Such a treatment is used in Tirole(1985), Rhee(1991), among others.
2Approach two is used in Farmer(2000), among others. Concerning the transaction of the

natural resource, there are alternative approaches, for example, at each period, the old men
harvest the resource and sell it to the firms, and sell the rest of the stock to the young men.
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• Decision making
All markets are completely competitive. We use the final good as numeraire,

the price of which is normalized as 1. We denote the prices of the physical
capital, labor, resource stock and resource harvest at time t as rt, ωt, pt, qt,
respectively. And suppose that any young man has perfect foresight about all
factors’ prices in the next period.

At any time t ∈ N, the decision problem for each young man is

max
(a,b,s,S,R)

U(a, b),

s.t.
a+ s+ ptS/Nt = ωt + (1 + qt)R/Nt,
b = (1 + rt+1)s+ pt+1G(S − dR)/Nt,
a ≥ 0, b ≥ 0, s ≥ 0, 0 ≤ R ≤ S,

where a, b are his consumption in this period and the next period, s is his savings
for the investment in physical capital in the next period, S is the resource stock
all the young men buy, R is the resource harvest sold to the firms.

At any time t ∈ N, the decision problem for each firm is

max
(K,L,R)

{
F t(K,L,R)− (δ0(t) + rt)K − ωtL− (d+ qt)R

}
,

where K,L,R are the physical capital, labor and resource harvest the firm buys,
and the depreciation rate of capital is assumed to be δ0(t) ∈ [0, 1].

Without any loss of generality, throughout this paper, we may assume that
δ0(t) ≡ 1 for any t ∈ N, since otherwise, we replace F t(K,L,R) by F t(K,L,R)+
(1− δ0(t)).

We say that this economy is in (dynamic) competitive equilibrium, if at any
time, any firm has got its profit maximized, for the given prices of all related
commodities, any individual has got his utility maximized, under his budget
constraint, and all the markets are cleared.

More precisely, we define the dynamic equilibrium as follows.
Definition 1. A sequence of vectors {rt, ωt, pt, qt; at, bt;Kt, St, Rt}t∈N is an

equilibrium, if
(i) for any t ∈ N,

(at, bt+1,Kt+1/Nt, St, Rt) ∈ arg max
(a,b,s,S,R)

U(a, b),

s.t.
a+ s+ ptS/Nt = ωt + (1 + qt)R/Nt,
b = (1 + rt+1)s+ pt+1G(S − dR)/Nt,
a ≥ 0, b ≥ 0, s ≥ 0, 0 ≤ R ≤ S;

and N−1b0 = (1 + r0)K0 + p0S0;
(ii) for any t ∈ N,

(Kt, Nt, Rt) ∈ arg max
(K,L,R)

{
F t(K,L,R)− (1 + rt)K − ωtL− (d+ qt)R

}
,
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s.t.
K ≥ 0, L ≥ 0, R ≥ 0;

(iii) for any t ∈ N,
St+1 = G(St − dRt).

It’s easy to verify that if {rt, ωt, pt, qt; at, bt;Kt, St, Rt}t∈N is an equilibrium,
then, for any t ∈ N,

1 + rt, ωt, pt, d+ qt, at, bt,Kt, St, Rt

are all positive.
In the rest of this paper, we mainly concern with the case d = 1. The case

of land, corresponding to d = 0, G(x) = x, can be treated similarly.
Proposition 1. If {rt, ωt, pt, qt; at, bt;Kt, St, Rt}t∈N is an equilibrium, then,

for any t ∈ N,

1 + rt = F tK(Kt, Nt, Rt), ωt = F tN (Kt, Nt, Rt), pt = F tR(Kt, Nt, Rt),

1 + qt = pt =
pt+1g

′(St −Rt)
1 + rt+1

, 1 + rt+1 =
Ua(at, bt+1)

Ub(at, bt+1)
,

Ntat = Yt −Nt−1bt −Kt+1, Nt−1bt = (1 + rt)Kt + ptSt,

where Yt = F t(Kt, Nt, Rt).
The relationship

pt =
pt+1G

′(St −Rt)
1 + rt+1

, ∀t ∈ N,

is the No-arbitrage condition, a generalized Hotelling rule, which is reduced to
the classical Hotelling rule (HotellinG(1931)) when G(x) = x.

The relationship

F t+1
K (Kt+1, Nt+1, Rt+1) =

Ua(at, bt+1)

Ub(at, bt+1)

means that the MRS (of consumption today to that next day) is equal to the
MRT (between savings today and the final good produced the next day).

From now on, we do not continue to use the notation qt, and instead, we use
pt−1 to replace it. In addition, we directly say that {rt, ωt, pt; at, bt;Kt, St, Rt}t∈N
is an equilibrium, if {rt, ωt, pt, pt − 1; at, bt;Kt, St, Rt}t∈N is an equilibrium in
the above definition.

In this paper, we mainly concern the issue of Pareto efficiency of the equi-
librium allocation. As to the existence of the equilibrium, this is another issue1.

1For the existence of equilibrium in OLG model, see Balasko, Cass and shell (1980), or
Geanakoplos(2008). Our main concern is the Pareto efficiency of the equilibrium allocation.
In the case, where there are multiple equilibria, we take any one of them and investigate its
efficient property.
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In most part of this paper, we simply assume the existence of the equilibrium,
and then, we discuss the “next” problem: its Pareto efficiency. 1.

Now, we recall the concept of efficiency.
Definition 2. A sequence of nonnegative vectors {at, bt;Kt, St, Rt}t∈N is

called a feasible allocation, if it satisfies the feasibility conditions: for any t ∈ N,

Ntat +Nt−1bt +Kt+1 ≤ F t(Kt, Nt, Rt),

St+1 = G(St −Rt).

We denote the set of all feasible allocation as A .
Definition 3. A feasible allocation {at, bt;Kt, St, Rt}t∈N is called Pareto

efficient , if there does not exist another feasible allocation {a′t, b′t;K ′t, S′t, R′t}t∈N
(K ′0 = K0, S

′
0 = S0) such that for any t ∈ N,

U(a′t, b
′
t+1) ≥ U(at, bt+),

b′0 ≥ b0,

and at least one of the above inequalities holds strict inequality. A feasible
allocation is called Pareto inefficient, (or, put it another way, it can be Pareto
improved), if it is not Pareto efficient.

If {rt, ωt, pt; at, bt;Kt, St, Rt}t∈N is an equilibrium, then, {at, bt;Kt, St, Rt}t∈N
is called the equilibrium allocation. Clearly, the equilibrium allocation is feasi-
ble.

We recall a well-known result, which gives a general necessary and sufficient
condition for the Pareto efficiency of a feasible allocation. That is, according
to the structure of this economy, a feasible allocation is Pareto efficient, if and
only if the utility of the ancestor is maximized, under the constraints that all
other generations are not worse off. This idea is noted by many authors, for
example, Famer et al (2010), among others. We write it as a proposition.

Proposition 2. A feasible allocation {a∗t , b∗t ;K∗t , S∗t , R∗t }t∈N is Pareto effi-
cient, if and only if it solves the optimization problem in A :

max u(b0),

s.t. Kt+1 = F t(Kt, Nt, Rt)−Ntat,−Nt−1bt, ∀t ∈ N,
St+1 = G(St −Rt), ∀t ∈ N,
U(at, bt+1) ≥ U(a∗t , b

∗
t+1), ∀t ∈ N.

The proof is easy, if only noticing that the increase of the utility of any t-
generation can be transfered to the (t− 1)- generation by decreasing at a little
bit and increasing bt but maintaining the sum of at and bt.

The optimization problem in Proposition 2 is infinitely dimensional. By
Lagrangian method, Euler equations and some TVCs will present sufficiency

1For general case, of course, there may be multiple equilibria, or no equilibrium. For
example, for the case of land, there may be multiple equilibria, asymptotically bubbly or
asymptotically bubbleless. See Rhee(1991). Among these equilibria, some are Pareto efficient,
some are not.
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condition for the solution. This approach will give us sufficiency conditions for
the equilibrium allocation to be Pareto efficient. (See next section).

From Proposition 2, we can get a corollary, which is a necessary condition
for the Pareto efficiency of any feasible allocation, which is, however, too weak.
This is just the Euler equations in some sense, the basic idea of which can
be stated as follows: the “optimal” path can not be improved locally in any
segment of the path.

Corollary 1. If a feasible allocation {at, bt;Kt, St, Rt}t∈N is Pareto efficient,
then, for any t ∈ N,

F t+1
R (Kt+1, Nt+1, Rt+1)G′(St −Rt)

F tR(Kt, Nt, Rt)

= F t+1
K (Kt+1, Nt+1, Rt+1) =

Ua(at, bt+1)

Ub(at, bt+1)
,

By Proposition 1, we see that the equilibrium allocation satisfies this necessary
condition, but, in general, it is not sufficient for the equilibrium allocation to be
Pareto efficient, just as demonstrated in the classical Diamond two-period OLG
model.

Corollary 1 can also be got as follows. It’s just the first order conditions
for the following problem: for any t ∈ N, all other variables are given, find
(at, bt+1,Kt+1, St+1, Rt, Rt+1) to solve

max U(at, bt+1),

s.t. F t(Kt, Nt, Rt) = Ntat +Nt−1bt +Kt+1,

F t+1(Kt+1, Nt+1, Rt+1) = Nt+1at+1 +Ntbt+1 +Kt+2,

St+1 = G(St −Rt),
St+2 = G(St+1 −Rt+1).

That is, fix all other variables (and hence the utilities of all other generations
are fixed), and let (at, bt+1,Kt+1, St+1, Rt, Rt+1) change, we can not increase
the utility of the t- generation.

In the end of this section, we mention another relevant efficiency concept,
for which we need to introduce Ramsey economy, which is related to but is in
sharp contrast to the above OLG economy.

We “contract” the above OLG economy to the so-called Ramsey economy:
there is one representative agent with infinite long life, and his endowment of
labor (or human capital) is Nt at time t, and he owns the physical capital K0

and natural resource S0 in time 0, and the technologies are the same as above,
and his consumption at time t is

Ct = Ntat +Nt−1bt. (1)

For this Ramsey economy, a sequence of nonnegative vectors {Ct,Kt, Rt, St}t∈N
is called feasible, if for any t ∈ N,

Kt+1 ≤ F t(Kt, Nt, Rt)− Ct,
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St+1 = G(St −Rt).

A feasible allocation {Ct;Kt, St, Rt}t∈N is called dynamically efficient, if there
does not exist another feasible allocation {C ′t;K ′t, S′t, R′t}t∈N (K ′0 = K0, S

′
0 = S0)

such that for any t ∈ N,
Ct ≤ C ′t,

and at least one of the above inequalities holds strict inequality. A feasible
allocation in this Ramsey economy is called dynamically inefficient, if it is not
dynamically efficient.

For the Ramsey economy, the dynamic efficiency is studied in many works
previously, such as Malinvaud sufficiency condition and Cass criterion, and their
various extensions.

Now, return to the OLG economy. A feasible allocation {at, bt,Kt, Rt, St}t∈N
in the above OLG economy is called aggregately efficient, if the corresponding
feasible allocation {Ct,Kt, Rt, St}t∈N in the above Ramsey economy is dynam-
ically efficient, where Ct is defined by (1). It’s aggregately inefficient, if it’s not
aggregately efficient.

Obviously, aggregate efficiency is weaker than Pareto efficiency. But, in
general, the converse is not true1. An extreme counterexample: we change
a Pareto efficient allocation to a new allocation by keeping the productions
unchanged and giving all the consumptions of the old to the young at the same
period, and suppose that the utility function for the t-generation is U(a, b)
satisfying U(a, 0) = −∞ for any a > 0.

As to the utility functional of the representative agent in this Ramsey e-
conomy, in order to be consistent with the utility function in the above OLG
economy, we consider a special case, where the utility function in the above
OLG economy is

U(a, b) = u(a) + ρu(b),

where ρ ∈ (0, 1), and u is a smooth, strictly increasing and strictly concave
function on [0,∞).

Take ε ∈ (0, 1). Now, for any t ∈ N, define a function on [0,∞):

πt(C) =: max εNtu(a) + ρNt−1u(b),

s.t. Nta+Nt−1b ≤ C.

Then, we define the utility functional of the representative agent as

Vε({Ct}t∈N) =

∞∑
t=0

εtπt(Ct),

where {Ct}t∈N is the sequence of his consumptions at all times.

1But, if we only consider the equilibrium allocation, then, the problem whether these two
concepts (Pareto efficiency and aggregate efficiency) are equivalent or not is still open.
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For the above OLG economy, for any given ε ∈ (0, 1), we define a social
welfare functional1 on A :

Wε({at, bt;Kt, St, Rt}t∈N) = ρN−1u(b0) +

∞∑
t=0

εt+1Nt (u(at) + ρu(bt+1)) .

Clearly, for any feasible allocation {at, bt,Kt, Rt, St}t∈N in A , we have

Wε({at, bt;Kt, St, Rt}t∈N) = Vε({Ct}t∈N),

where Ct is defined in (1).
Therefore, the social welfare functional in the OLG economy is consistent

with the utility functional of the representative agent in the Ramsey economy.
In the OLG economy, in the set A , for any given welfare functional Wε, we

call a feasible allocation is socially optimal wrtWε, if it realizes the maximization
of Wε in A . Obviously, social optimality is stronger than Pareto efficiency. But,
in general, the converse is not true.

In the above Ramsey economy, equipped with such a utility functional
as above, we can define its equilibrium as follows: for a given price system
(rt, ωt, pt)t∈N, (prices of capital, labor and natural resource), at any time, the
firm maximizes its profit; the representative agent maximizes his lifelong utility,
and all markets are cleared. In particular, under the given price system, the
representative agent solves his problem:

max

∞∑
t=0

εtπt(Ct),

s.t. Kt+1 = (1 + rt)Kt + ωtNt + ptRt − Ct,
St+1 = G(St −Rt),

which,due to the homogenous property of the production functions, is equivalent
to the social planner’s problem in the OLG economy:

max

∞∑
t=0

εtπt(Ct),

s.t. Kt+1 = F t(Kt, Nt, Rt)− Ct,
St+1 = G(St −Rt).

Obviously, in such a Ramsey economy, the equilibrium allocation must be Pareto
efficient.

3 Main results

Suppose that for the above OLG economy, there exists an equilibrium

{rt, ωt, pt; at, bt;Kt, St, Rt}t∈N .
1It is the weighted sum of the utilities of all generations. The weights can be assigned

differently. See section 4.
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For any t ≥ 1, denote the market discount factor from time t to time 0 as

Dt =

t∏
s=1

(1 + rs)
−1,

and D0 =: 1. For any t ∈ N, denote the sum of the individual investments of
all the young men as

Jt = Kt+1 + pt(St −Rt),

and denote the total value of assets as

Vt = (1 + rt)Kt + ptSt,

That is, at time t, the old men hold the assets (Kt, St), through trade in the
markets, they can get the total revenue Vt, and consume it. In fact, by Propo-
sition 1, we have Vt = Nt−1bt. And, at time t, the young men make a total
investment Jt, including two parts: investment to physical capital Kt+1 and
investment to natural resource pt(St −Rt), and at time t+ 1, they get old and
get the total investment revenue Vt+1. Then, in this sense, we can say that such
an investment earns a dividend

dt+1 = Vt+1 − Jt = rt+1Kt+1 + pt+1St+1 − pt(St −Rt).

For any t ∈ N, denote the growth rate of investment to physical capital at time
t and the growth rate of total investment at time t as

it =
Kt+1

Kt
− 1, jt =

Jt+1

Jt
− 1,

respectively.
It’s worthwhile to point out that at any time t ∈ N, the aggregate investment

for the whole society (in our setting) is

Kt+1 = Yt − Ct,

which in fact is the total savings from human production, (rest of the total
output, after subtracting the total consumption), saved for the usage in the
production in the next period. But, we also notice that at the meantime, there
are “savings” of another type: the savings from nature: St − Rt at the end of
t-period, which will grow to St+1 = G(St −Rt). In each period, the production
depends, besides labor, not only on the savings from human production in the
last period but also on the savings from nature in the last period.

This feature is not captured in AMSZ(1989), in which they assume that
all the production factors come from the savings from human production in
some previous periods, besides labor and some random perturbation. Therefore,
AMSZ(1989) can not cover the case with natural resources.

To present sufficiency conditions and necessity conditions for the Pareto
efficiency of the equilibrium allocation, AMSZ(1989) takes an approach in terms

13



of dt and Jt. And, just because of this, their criterion is called dividend criterion
by some authors thereafter. In our model with natural resources, using dt and
Jt is not convenient. We will modify the approach in AMSZ(1989), and use Kt,
Vt, instead.

In addition, the approach in Croix et al (2004) is also interesting, they study
the efficiency issue by investigating the limit behavior of wages. We will modify
their approach and use the total income in some sense.

In the sequel, we give two general sufficiency conditions and two general
necessity conditions for the Pareto efficiency of the equilibrium allocation. The
proofs can be found in Appendix.

3.1 Sufficiency condition for efficiency

Now, we state the general sufficiency conditions.

3.1.1 In terms of wage

Theorem 1. The equilibrium allocation is Pareto efficient, if

lim inf
t→∞

DtωtNt = 0. (2)

The condition (2) is the same as in Lemma 2.1 in Croix et al (2004), in
the standard Diamond OLG model, which is a modification of the condition in
Theorem 1 in Homburg (1992). Our Theorem 1 says that the condition of Croix
et al still works, even the economy is added natural resource. This condition
means that there is nothing valuable left finally, in other words, roughly, all
income from labor is used up finally.

Since along the equilibrium path, we have that for any t ∈ N,

Dtpt = Dt+1pt+1G
′(St −Rt),

then,

Dt+1pt+1Rt+1 = DtptRt
Rt+1

RtG′(St −Rt)
.

Therefore, from Theorem 1, we get
Corollary 2. For the above equilibrium, if

lim inf
t→∞

RtG
′(St −Rt)
Rt+1

> 1, (3)

lim inf
t→∞

NtF
t
N (Kt, Nt, Rt)

RtF tR(Kt, Nt, Rt)
<∞, (4)

then, the equilibrium allocation is Pareto efficient.
Here, (3) means roughly that the natural resource is not harvested too quick-

ly; (4) means that in production, the resource share is not nil, comparing with
the labor share, at least asymptotically along the equilibrium path, in other
words, roughly, the natural resource is essential in production.
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3.1.2 In terms of total value of assets

We have an alternative sufficiency condition.
Theorem 1’. The equilibrium allocation is Pareto efficient, if

lim
t→∞

DtVt = 0. (5)

Condition (5) is a Malinvaud type sufficiency condition. In an one-sector
Ramsey economy with exhaustible resource, Mitra(1978) proves that condition
(5) is also necessary for a competitive program to be dynamically efficient, under
the additional assumption that the resource share in production (the elasticity
of output to resource) is bounded away from zero.

Roughly, condition (5) is stronger than condition (2), at least in the case,
where for any t ∈ N,

F t(K,N,R) = AtK
αNβRγ ,

where At > 0, α, β, γ ∈ (0, 1), and α + β + γ = 1. In addition, for application,
condition (2) is more convenient than (5).

3.2 Sufficiency condition for inefficiency

As mentioned in section 2, the concept Pareto efficiency is stronger than the
concept aggregate efficiency, then, all the relevant results about the dynamic
inefficiency in Ramsey economy can be used here. More precisely, an allocation
in the above OLG economy is Pareto inefficient, if the corresponding allocation
in the “contracted” Ramsey economy is dynamic inefficient.

3.2.1 In terms of capital

Theorem 2. The equilibrium allocation is Pareto inefficient, if

lim inf
t→∞

1 + it
1 + rt

> 1. (6)

This is part of the popular view: if the growth rate of investment is higher
than the rate of return of investment, then, the capital is over-accumulated, and
this makes the economy inefficient.

The sufficient condition for Pareto inefficiency of the equilibrium allocation,
given in AMSZ(1989) (without natural resources), is

1 + rt
1 + jt

≤ ε, ∀t ∈ N,

for some ε ∈ (0, 1). But, in our setting with natural resources, such a condition
can not guarantee the Pareto inefficiency, we modify it to (6), instead.

15



3.2.2 In terms of wage

We give an alternative sufficiency condition for the Pareto inefficiency of the
equilibrium allocation in terms of wages for a special case, where the utility
function is of CRRA type.

Theorem 2’. Suppose the utility function is

U(a, b) = u(a) + ρu(b),

where ρ ∈ (0, 1), and

u(x) =
x1−σ − 1

1− σ
, x ≥ 0,

where σ ∈ (0, 1]. The equilibrium allocation is Pareto inefficient, if

lim inf
t→∞

(1 + rt)
1−σ > 0, (7)

and

lim inf
t→∞

ρ−1/σ+ + (1 + rt+1)(1−σ)/σ

ρ−1/σ+ + (1 + rt+2)(1−σ)/σ
Dt+1It+1Nt+1

DtItNt
> 1, (8)

where for any t ∈ N,

It = ωt +
1

Nt

(
pt+1

1 + rt+1
St+1 − pt(St −Rt)

)
,

which indicates the total income of an individual of t-generation, composing of
income from labor and income from investment to natural resource.

Condition (7) disappears, if σ = 1; it becomes

lim inf
t→∞

rt > −1,

if σ ∈ (0, 1).
Condition (8) means roughly that the present value of total income for t-

generation is increasing finally. It’s partially opposite to condition (2).
From Theorem 2’, we can easily get a corollary.
Corollary 4. Under the assumptions of Theorem 2’, if furthermore along

the equilibrium path, the economy converges to a nontrivial steady state, in
particular, as t→∞,

pt → p∗ > 0, ωt → ω∗ > 0, rt → r∗ > −1,

St → S∗ > 0, Rt → R∗ ∈ (0, S∗),

and
Nt = (1 + n)t, ∀t ∈ N ,

where n > −1. Then, if r∗ > n, then, the equilibrium allocation is Pareto
efficient; if r∗ < n, then, the equilibrium allocation is Pareto inefficient.
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3.3 OLG with land

In the end of this section, we mention that a similar results holds for the case,
where the natural resource is land, rather than the raw material considered
above.

In fact, for the case of land, we suppose that there exists an equilibrium

{rt, ωt, pt, qt; at, bt;Kt, St, Rt}t∈N ,

where, in particular, pt and qt are the price of land and the rental of land at
time t, respectively. All other variables have the meanings as above.

The transaction of land is as follows. For any t ∈ N, at the beginning of
period t, the old men sell the land to the young at price pt, then, the young rent
it to the firms at price qt, and at the end of period t, the young hold the land
to the next period1.

By no-arbitrage condition, we have that for any t ∈ N,

pt − qt =
pt+1

1 + rt+1
,

then,
Dtpt = Dt+1pt+1 +Dtqt.

Therefore, (Dtpt)t∈N is decreasing, and hence, there is β0 ≥ 0 such that Dtpt →
β0 as t→∞, and for any t ∈ N,

pt = ft + βt,

where

ft =

∞∑
s=t

Ds

Dt
qs, βt = β0/Dt,

are the fundamental and the bubble of land at t, respectively. And,

p0 = β0 +

∞∑
t=0

Dtqt,

therefore,
∞∑
t=0

Dtqt <∞,

implying
lim
t→∞

Dtqt = 0.

Now, we state the results concerning the efficiency (inefficiency) of the e-
quilibrium allocation. The proofs are the same as in the case of raw material,
hence, omitted.

1It’s a bit different from Rhee(1991) which allows the old to rent the land to the firms
and then sell it to the young. And hence, here, pt is the price of land before dividend, rather
than the price of land after dividend in Rhee(1991).
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In case of land, in principle, Theorems 1, 2, 1’, 2’ still hold, except that
condition (5) in Theorem 1’ can be weakened to

lim
t→∞

DtKt+1 = 0,

and in Theorem 2’, by the no-arbitrage condition, the income from the invest-
ment to land is zero, and hence, for any t ∈ N, It = ωt.

Thus, if

lim inf
t→∞

qt
ωtNt

> 0, (9)

then, condition (2) holds.
Here, condition (9) is a bit weaker than the sufficiency condition

lim inf
t→∞

qt
Yt

> 0,

(where Yt is the total output of the consumption good at time t), which is given
in Proposition 1 in Rhee (1991).

But, Rhee (1991) presents1 an example that there is an equilibrium path
(asymptotically bubbly), along which

lim
t→∞

DtωtNt ∈ (0,∞),

but the corresponding equilibrium allocation is Pareto efficient. It indicates that
condition (2) is sufficient but not necessary for the equilibrium allocation to be
Pareto efficient.

4 Linear regeneration function

In the basic setup in section 2, we make further assumptions as follows.
A1. For any t ∈ N,

F t(K,L,R) = At (αKσ + βLσ + γRσ)
1/σ

,

where σ < 1, 0 < α, β, γ < 1 are given constants, satisfying α+ β + γ = 1, and
for any t ∈ N, At > 0 is a constant representing the TFP 2. In particular, if
σ = 0, then, F t is reduced to Cobb-Douglas type: F t = AtK

α
t L

β
t R

γ
t .

A2. For any t ∈ N,

U(at, bt+1) = ln at + ρ ln bt+1,

where ρ ∈ (0, 1) is the discount factor. And anyone of the original generation
has a utility function ρ ln b0, where b0 is her consumption at t = 0. Or, put it
another way, let’s make a convention that a−1 ≡ 1.

1See Rhee (1991)(section III. A counterexample).
2It needs to be emphasized that in our setting, the condition γ > 0 is crucial, that is, the

natural resource is essential in production. If γ = 0, then, the model will be reduced to the
classical Diamond OLG model, in which the equilibrium allocation is not necessarily Pareto
efficient.
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A3. The motion law of the natural resource is

St+1 = η(St −Rt),

where η > 0 is a constant, which can be called the strength of the regeneration
of the resource. The exhaustible resource is our special case, where η = 1.

The concept of social optimality with respect to (wrt for short) some given
social welfare functional is standard.

For any ε ∈ (0, 1), we construct a social welfare functional Wε as follows: for
any feasible allocation {at, bt;Kt, St, Rt}t∈N, we define its social welfare value
as the weighted sum of the utility values of all generations it induces:

Wε

(
{at, bt;Kt, St, Rt}t∈N

)
= ρ ln b0 + ε

∞∑
t=0

(εt/Nt)(ln at + ρ ln bt+1)Nt,

=

∞∑
t=0

εt(ε ln at + ρ ln bt).

Now, wa say a feasible allocation {at, bt;Kt, St, Rt}t∈N socially optimal wrt
Wε, if its social welfare value wrt Wε is bigger than or equal to the social welfare
value of any other feasible allocation wrt Wε.

Obviously, if a feasible allocation is socially optimal wrt some social welfare
functional Wε with some ε ∈ (0, 1), then, it is Pareto efficient.

The special case, where η = 1, σ = 0, is studied in Agnani et al. (2005).

4.1 Cobb-Douglas case

We first consider the case, where σ = 0.

4.1.1 Equilibrium existence, uniqueness and efficiency

By Proposition 1 and Lemma 1 in Appendix, we obtain the following result.
Proposition 3. The equilibrium exists and is unique, which is determined

uniquely by the conditions: for ∀t ∈ N,

1 + rt =
αYt
Kt

, ωt =
βYt
Nt

, pt =
γYt
Rt

,

Ntat =
β

1 + ρ
Yt, Nt−1bt =

(
α+

γ

1− δ

)
Yt;

Kt+1 = αδYt, St = (ηδ)tS0, Rt = (1− δ)(ηδ)tS0,

where Yt = AtK
α
t N

β
t R

γ
t , and

δ =
(α+ θ + γ)−

√
(α+ θ + γ)2 − 4αθ

2α
, (10)
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where

θ =
ρβ

1 + ρ
.

Clearly, in the case of γ = 0, by ignoring pt, St, Rt, and replacing δ by θ/α,
this result is reduced to the equilibrium result in the classical Diamond model.

We see that in the equilibrium path, the natural resource planar dynam-
ic difference system (St, Rt)t∈N does not concern with the technical progress,
population growth and the capital at all.

As above, we denote the market discount factor from time t to time 0 by
Dt, and market discount factor from time s ≥ t to time t by D(t, s).

By Proposition 3, we see that for any t ≥ 1,

Yt =
1

α
(1 + rt)Kt = (1 + rt)δYt−1,

Ntωt = βYt, ptRt = γYt, Rt = (1− δ)St,

therefore,
DtYt = δtY0, ∀t ∈ N,

thus,
∞∑
t=0

DtYt <∞, (11)

ptSt =

∞∑
s=t

D(t, s)psRs, ∀t ∈ N. (12)

(11) means that the present value of the output flow is finite. (12) means that
the natural resource has no bubble, that is, at any time, the value of the stock
is equal to the value of the harvest flow from then on.

Clearly,
lim
t→∞

DtωtNt = lim
t→∞

DtYt = 0,

and hence, by Theorem 1, we get the following proposition.
Proposition 4. The equilibrium allocation is Pareto efficient.
That is, if only the regeneration function is linear, the production is of Cobb-

Douglas, the utility function is additive log, and, most importantly, γ > 0,
then, the equilibrium is always Pareto efficient. This is in sharp contrast to the
classical Diamond OLG model without natural resource.

By the way, in this case, (3) and (4) are also satisfied.

4.1.2 Asymptotic property and social optimality

It’s worthwhile to mention that so far, we do not make any assumption about
the patterns of changes of technology At and population Nt. In this section, we
make a further assumption.

A4. For any t ∈ N,

At = (1 + λ)t, Nt = (1 + n)t,
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where λ ≥ 0, n > −1 are constants.
For any t ∈ N, let Ut = ln at + ρ ln bt+1, which can be taken as the welfare

measurement for the t-generation. (We make the convention a−1 = 1)
We now look at the asymptotic properties of kt, yt, at, bt, Ut, rt, pt, ωt as t→

∞ along the equilibrium path, where kt = Kt/Nt, yt = Yt/Nt.
From the Proposition 3, one can obtain the following corollary immediately.
Corollary 5. Along the equilibrium path, as t→∞,

K̊t → 1 + φ, Y̊t → 1 + φ,

åt → (1 + φ)/(1 + n), b̊t → (1 + φ)/(1 + n),

k̊t → (1 + φ)/(1 + n), ẙt → (1 + φ)/(1 + n),

ω̊t → (1 + φ)/(1 + n), p̊t →
1 + φ

ηδ
,

rt → r =:
1 + φ

δ
− 1, Ut − t(1 + ρ) ln((1 + φ)/(1 + n))→ v,

where v is some constant, and 1 + φ =
(
(1 + λ)(1 + n)β(ηδ)γ

)1/(β+γ)
.

Remark 1 (BGP). When kt, yt, at, bt grow at the same growth rate, then,
we say that the economy is on a balanced growth path, BGP, for short. When the
growth rates of kt, yt, at, bt approach to the same rate asymptotically, then, we
say that the economy is on a BGP asymptotically, or, on an asymptotic BGP.
When this same rate is negative, then, we say that this economy per capita
contracts asymptotically; when this same rate is zero, then, we say that this
economy per capita is steady asymptotically; when this same rate is positive,
then, we say that this economy per capita booms asymptotically.

Note that the limit growth rate of the investment (to physical capital) is φ,
and the limit interest rate (rate of return of investment to physical capital) is r,
since δ ∈ (0, 1), then, it always holds that r > φ. Therefore, it does not occur
overaccumulation of capital.

Form Corollary 5, we have immediately the following results.
Proposition 5. From any initial state (K0, S0), the economy goes on a

BGP asymptotically. The economy is on an exact BGP, if and only if

φKβ+γ
0 = αδ((1− δ)S0)γ .

Agnani et al. (2005) assume not only the existence and uniqueness of the
equilibrium but also that the equilibrium path is an exact BGP. Our Proposition
4 indicates that the exact BGP is really rare to happen.

Denote
∆ = ηδ(1 + λ)1/γ − (1 + n).

For fixed ρ ∈ (0, 1), η > 0, λ ≥ 0, n > −1, ∆ is a function of (α, β, γ). The
simplex

A =
{

(α, β, γ)
∣∣0 < α, β, γ < 1, α+ β + γ = 1

}
(13)
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can be divided to three areas, according to ∆ < 0; ∆ = 0; ∆ > 0, respectively.
On A, ∆ = 0 is a continuous curve, the shape of which is roughly delineated in
Agnani et al. (2005).

Proposition 6. The economy per capita contracts asymptotically; is steady
asymptotically; booms asymptotically, if ∆ < 0; ∆ = 0; ∆ > 0, respectively.

Because δ is not the initial parameter of the model, it’s better to induce
from Proposition 5 some other formula in terms of the initial parameters.

It’s easy to see that

θ

θ + α+ γ
< δ <

θ

θ + γ
.

Therefore, we have
Corollary 6. The economy per capita contracts asymptotically, if

β

(
η(1 + λ)1/γ

1 + n
− 1

)
<

1 + ρ

ρ
γ;

the economy per capita booms asymptotically, if

β

(
ρη(1 + λ)1/γ

1 + n
+ 1

)
> 1 + ρ.

That is, if the population grows too quickly (comparing with natural resource
regeneration rate and the technical change rate), or the labor share is too small,
or, the discount factor is too small, then, the economy per capita contracts, and
moreover, the wage goes to zero. Corollary 6 covers Proposition 2 in Agnani et
al (2005) for exhaustible resource.

On the contrary, if technological progress is sufficiently quick, the natural
resource regenerates sufficiently quickly, and the labor share is not so small,
then, the economy per capita booms asymptotically, the wages go to infinity.

Moreover, we can get the social optimality of the equilibrium allocation,
which is stronger than the Pareto efficiency. Recall δ is defined in (10).

Proposition 7. The equilibrium allocation is socially optimal with respect
to Wδ.

The proof can be found in Appendix.

4.2 CES case

Now, we consider the case of σ 6= 0. We restrict our consideration to the special
case without technical progress and with exponential population growth, that
is, At = 1, Nt = (1 + n)t for any t ∈ N, where n ≥ 0.

Analogous to the above analysis, we can get the dynamical system of the
equilibrium path:

Kt+1 = (αKσ
t + βNσ

t + γRσt )
(1−σ)/σ

[
θNσ

t + γRσt

(
1− St

Rt

)]
,
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Rt+1 =
( η
α

)1/(1−σ) Rt
αKσ

t + βNσ
t + γRσt

[
θNσ

t + γRσt

(
1− St

Rt

)]
,

St+1 = η(St −Rt).

Denote the capital, resource stock and resource harvest per capita respectively
as

kt =
Kt

Nt
, st =

St
Nt
, zt =

Rt
Nt
.

Then, we get the dynamical system of (kt, st, zt)t∈N:

kt+1 =
1

1 + n
(αkσt + β + γzσt )

(1−σ)/σ
[
θ + γzσt

(
1− st

zt

)]
, (14)

zt+1 =
1

1 + n

( η
α

)1/(1−σ) zt
αkσt + β + γzσt

[
θ + γzσt

(
1− st

zt

)]
, (15)

st+1 =
η

1 + n
(st − zt). (16)

Any path (kt, st, zt)t∈N satisfying the feasibility condition that for any t ∈ N,
st > 0, zt > 0, and

0 <
st

z1−σt

− zσt < θ/γ,

induces an equilibrium. The corresponding prices of capital, labor and resource
are

rt = αkσ−1t (αkσt + β + γzσt )
(1−σ)/σ − 1, (17)

ωt = β (αkσt + β + γzσt )
(1−σ)/σ

, (18)

pt = γzσ−1t (αkσt + β + γzσt )
(1−σ)/σ

, (19)

respectively. And, by the Hotelling rule, for any t ∈ N, the income from invest-
ment to the natural resource is zero, and hence, the total income in Theorem 2’
is only the income from labor, that is, It = ωt.

A feasible path (kt, st, zt)t∈N, together with its corresponding (rt, ωt, pt)t∈N,

satisfying (14)-(19), is called a steady state equilibrium, if there exist k̂, ŝ, ẑ ∈
[0,∞) such that as t → ∞, kt → k̂, st → ŝ, zt → ẑ. If ŝ > 0, ẑ > 0, then, we
say it’s a nontrivial steady state equilibrium. If ŝ = 0, ẑ = 0, then, we say it’s
a trivial steady state equilibrium.

First of all, we consider the nontrivial steady state equilibrium. If there is
nontrivial steady state equilibrium, then, by dropping off all subscripts in (14),
(15) and (16), we can get a unique (closed form) solution of this steady state,
from which we can conclude that there exists (unique) nontrivial steady state
equilibrium, if and only if

η > (1 + n) ∨
[
α ((1 + n)(1 + ρ)/ρ)

1−σ
]
, ησ > α.

And, correspondingly, the limit wage exists and is positive, and the limit interest
rate is

lim
t→∞

rt = η − 1.
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And hence, by Theorem 1, this nontrivial equilibrium allocation is Pareto effi-
cient.

Moreover, if σ > 0, then, there is a nontrivial steady state equilibrium, if
and only if

η > (1 + n) ∨
[
α ((1 + n)(1 + ρ)/ρ)

1−σ
]
∨ α1/σ.

If σ < 0, then, there is a nontrivial steady state equilibrium, if and only if

α1/σ > η > (1 + n) ∨
[
α ((1 + n)(1 + ρ)/ρ)

1−σ
]
,

which yields
α < ((1 + n)(1 + ρ)/ρ)

σ
.

That is, roughly, in the case, where the factors in production are substitutable,
there exists a nontrivial steady state equilibrium, iff the regeneration rate of the
natural resource is sufficiently large; while in the case, where the factors in pro-
duction are complementary, there exists a nontrivial steady state equilibrium,
iff the regeneration rate of the natural resource is located in some interval, in
addition, α is sufficiently small. (Here, α be seen as a modified capital share in
some sense.)

In the sequel, we consider the trivial steady state equilibria. We discuss it
in two cases separately.

4.2.1 σ ∈ (0, 1)

It’s easy to see that there are a continuum of trivial steady state equilibria: for
any ε ∈ [0, θ], there is a steady state equilibrium such that as t→∞,

st → 0, zt → 0,
st

z1−σt

→ (θ − ε)/γ, kt → k,

where k can be determined uniquely by letting t→∞ in (14), that is,

k =
ε

1 + n
(αkσ + β)

(1−σ)/σ
. (20)

Correspondingly, as t→∞, rt → r, ωt → ω, where

1 + r = αkσ−1 (αkσ + β)
(1−σ)/σ

, (21)

ω = β (αkσ + β)
(1−σ)/σ ∈ (0,∞).

For ε = 0, correspondingly, k = 0, r =∞, then, as t→∞,

DtωtNt → 0.

Therefore, by Theorem 1, the corresponding equilibrium allocation is Pareto
efficient.
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For any ε ∈ (0, θ], by (20) and (21), the limit interest rate and the limit
capital per capita of the corresponding trivial steady state equilibrium satisfy

1 + r

1 + n
=
αkσ

ε
=: b.

By Theorem 1 and Theorem 2 or Theorem 2’, we have that if b > 1, then, the
corresponding trivial steady state equilibrium allocation is Pareto efficient; if
b < 1, then, it is Pareto inefficient1.

Form (20), we get that b satisfies

(1 + n)σ

α
b =

(
b+

β

ε

)1−σ

.

And hence, b > (=, <)1, if and only if ε < (=, >)ε, where

ε =: min

θ, β[
((1 + n)σ/α)

1/(1−σ) − 1
]
+

 ,

where [·]+ indicates the positive part. Denote

n =
[
α (2 + 1/ρ))

1−σ
]1/σ

− 1.

Clearly, ε = θ, if and only if n ≤ n.
Therefore, if n < n, then, any trivial steady state equilibrium allocations

are Pareto efficient. If n ≥ n, then, the allocations of any trivial steady state
equilibria, corresponding to ε ∈ [0, ε), are Pareto efficient; the allocations of any
trivial steady state equilibria, corresponding to ε ∈ (ε, θ], are Pareto inefficient.

Noticing that

lim
t→∞

zt

s
1/(1−σ)
t

=

(
γ

θ − ε

)1/(1−σ)

,

we can interpret ε as some indicator of speed of resource harvesting. Therefore,
among the trivial steady state equilibria, concerning the resource harvesting,
the slower, the better in the sense that it’s more prone to be Pareto efficient.

4.2.2 σ < 0

It’s easy to see that there are a continuum of trivial steady state equilibria: for
any ε ∈ [0, θ], there is a steady state equilibrium such that as t→∞,

st → 0, zt → 0,
st − zt
z1−σt

→ (θ − ε)/γ, kt → 0.

1The case b = 1 can not be treated directly by our Theorems. But we guess that it’s Pareto
efficient in that case. Then, that will be a counterexample for the necessity of condition (2).
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Notice that as t→∞,

1 + rt
1 + it

=
1 + rt

(1 + n)kt+1/kt
=

αkσt
θ − γ(st − zt)/z1−σ

→∞,

then, by Theorem 2, all of these equilibrium allocations are Pareto efficient.
To sum up, in the general CES case, roughly, all the steady state equilib-

rium allocations are Pareto efficient, except for those in which the factors are
substitutable and the resource is harvested relatively quite fast.

5 Quadratic regeneration function

Now, we consider a nonlinear case. More precisely, assume that for any t ∈ N,

F t(K,N,R) = AtK
αNβRγ ,

U(at, bt+1) = ln at + ρ ln bt+1,

Nt = (1 + n)t, At = (1 + λ)t,

and
G(x) = 2ax− bx2,

where n ≥ 0, λ ≥ 0, ρ, α, β, γ ∈ (0, 1) such that α + β + γ = 1, a > 0, b > 0.
We assume a and a/b are sufficiently large so that g is strictly increasing in
a sufficiently large interval [0, a/b], on which g′(x) > 1, if x < (a − 1/2)/b;
g′(x) < 1, if x > (a− 1/2)/b. Here, 2a can be seen as the intrinsic growth rate
of the natural resource, and 2a/b is the carrying capacity of the environment
for this natural resource.

It’s easy to see that the equilibrium path satisfies that for any t ∈ N,

1 + rt =
αYt
Kt

, ωt =
βYt
Nt

, pt =
γYt
Rt

, Yt = AtK
α
t N

β
t R

γ
t ,

Ntat =
Yt

1 + ρ

[
β +

(
G(St −Rt)
g′(St −Rt)

− (St −Rt)
)
γ

Rt

]
,

Nt−1bt = Yt

(
α+ γ

St
Rt

)
,

and

Kt+1 =
Yt

1 + ρ

[
ρβ −

(
G(St −Rt)
g′(St −Rt)

+ ρ(St −Rt)
)
γ

Rt

]
,

St+1 = G(St −Rt), (22)

Rt+1 =
1

α(1 + ρ)
[ρ((β + γ)Rt − γSt)g′(St −Rt)− γG(St −Rt)] , (23)

and

0 < Rt < St. (24)
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As in the linear case, the planar difference dynamical system of (St, Rt)t∈N,
described by (22) and (23), is determined only by the parameters ρ, α, β, γ and
the regeneration function g, but does not concern with the capital and the
parameters λ, n, that is, the capital, the technical progress and the population
growth have no impact on the movement of the natural resource. And, R0 is
not determined for this moment.

By the generalized Hotelling rule, we know that along any equilibrium path,
for any t ∈ N, we have

G′(St −Rt) > 0,

then, for any t ∈ N,
St −Rt < a/b.

In addition, from 0 < Rt+1 < St+1, we get that for any t ∈ N,

γ < ρ [(β + γ)Rt − γSt]
G′(St −Rt)
G(St −Rt)

< γ + α(1 + ρ),

which, in particular, implies that for any t ∈ N,

Rt >
γ

β + γ
St.

Therefore, any path, going outside the area in the S-R plane:{
(S,R)|(S − a/b)+ ∨ (γ/(β + γ))S < R < S

}
,

can not be an equilibrium path. And, any R0, which induces a path, satisfying
(22), (23) and (24), will give an equilibrium.

The planar dynamical system of (St, Rt)t∈N has possibly two steady states1:
the first one is the trivial (0, 0)2; the second is a non-trivial one (S∗, R∗), where

R∗ = G(x∗)− x∗,
S∗ = G(x∗),

where x∗ ∈ (0, a/b) is determined by(
α+

γ

1 + ρ

)
(2a− bx∗)− α =

2ρβ

1 + ρ
(a− bx∗)

(
2a− 1− γ

β
− bx∗

)
,

which has a unique root in (0, a/b).
About the more detailed location of x∗, we have the following Lemma, the

proof is easy, hence, omitted.
Lemma 2. If β < κ, then, x∗ < (a−1/2)/b; if β = κ, then, x∗ = (a−1/2)/b;

if β > κ, then, x∗ > (a− 1/2)/b, where

κ =
1 + ρ

ρ
α+

(
1

ρ
+

1 + ρ

ρ(a− 1/2)

)
γ,

1In the linear case, there is only one steady state, which is the trivial one (0, 0). But here,
if a is not sufficiently large, the nontrivial steady state may not exist.

2In this state, at, bt,Kt, Yt are all zero, and the economy collapses.
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which is a function of α, γ for fixed ρ, a. κ can be seen as an aggregate index of
physical capital share α and natural capital share γ, for simplicity, it is called
aggregate capital index.

Then, the simplex A, defined in (13), can be divided to three areas, corre-
sponding to β < κ, β = κ, β > κ, respectively.

It’s easy to verify that for this dynamical system, the Jacobian matrix at
the steady state (0, 0) has two eigenvalues bigger than 1, and hence, the steady
state (0, 0) is a source, to which no feasible path converges.

Now the second steady state (S∗, R∗). Denote the Jacobian matrix at the
steady state (S∗, R∗) as A, denote the trace of A as T , the determinant of A as
D. Then, the characteristic equation for A is

x2 − Tx+D = 0,

where x is the eigenvalue of A. Noticing a/b is sufficiently large, one can verify
directly that

T > 0, D > 0, T 2 > 4D, 1 +D < T,

and hence, A has two positive eigenvalues, one is smaller than 1, the other is
bigger than 1. Therefore, (S∗, R∗) is a saddle.

Consequently, there exists a unique R0 which induces a unique saddle path
converging to this saddle, and then, the unique equilibrium follows.

Now, we discuss the efficiency of the equilibrium allocation and the issue of
sustainability of this economy. To this end, we first give a corollary from the
above analysis. The proof can be found in Appendix.

Denote

kt =
Kt

Nt
, yt =

Yt
Nt
, τt = DtItNt.

and
g =:

(
(1 + λ)(1 + n)β

)1/(β+γ) − 1,

r =: G′(x∗)(1 + g)− 1, ϕ :=

(
1 + λ

(1 + n)γ

)1/(β+γ)

.

Corollary 7. Along the equilibrium path, as t→∞,

K̊t → 1 + g, Y̊t → 1 + g,

k̊t → ϕ, ẙt → ϕ, åt → ϕ, b̊t → ϕ,

rt → r, ω̊t → ϕ, p̊t → 1 + g, τ̊t →
1

G′(x∗)
.

We see that g is the asymptotic growth rate of Kt and Yt, and r is the
asymptotic interest rate. And, as t→∞, at, bt, kt, yt all grow at the same rate
asymptotically. In other words, the economy goes on an asymptotic BGP.

Concerning the Pareto efficiency, we know that if β < κ, then, by Lemma
2, g′(x∗) > 1, and hence, from Corollary 7, r > g. Therefore, (2) is satisfied.
Thus, by Theorem 1, the equilibrium allocation is Pareto efficient.
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If β > κ, then, by Lemma 2, g′(x∗) < 1, and hence, from Corollary 7, r < g.
Thus, by Theorem 2, the equilibrium allocation is Pareto inefficient.

To sum up, we get1

Proposition 8. If β < κ, then, the equilibrium allocation is Pareto efficient;
if β > κ, then, the equilibrium allocation is Pareto inefficient.

We see that the labor share plays crucial role. If the labor share is smaller
than the aggregate capital index, then, efficient; if the labor share is bigger
than the aggregate capital index, then, inefficient. This is not like the linear
case above, where the equilibrium allocation is always Pareto efficient, no matter
how the factor shares are distributed, and how high or low the growth rate of
the resource.

On the simplex A, the line segment β = κ has two endpoints, the coordinates
of them are (α, β, 0) and (0, β, γ), respectively, where

α =
ρ

1 + 2ρ
, β =

1 + ρ

1 + 2ρ
,

β =
1 + 2a+ 2ρ

(1 + ρ)(1 + 2a)
, γ =

ρ(2a− 1)

(1 + ρ)(1 + 2a)
.

Recall a is sufficiently large, then β < β.

Figure 1: Division of Simplex A.

Clearly, if α > α, or β < β, then, β < κ; if β > β, then, β > κ. And, of
course, if γ > γ, then, β < β. Then, from Proposition 8, we get

Corollary 8. If α > α, or β < β, then, the equilibrium allocation is Pareto

efficient; if β > β, then, the equilibrium allocation is Pareto inefficient.

1As to the cut-edge case β = κ, the issue becomes quite tough, even in the classical
Diamond OLG model. The rigorous mathematical treatment is difficult.
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From this corollary, we see that if the labor share is small enough (including
the case, where the resource share is large enough), or the capital share is large
enough, then, Pareto efficiency holds; if the labor share is large enough, then,
Pareto inefficiency holds, no matter how the capital share and resource share
are distributed. If the labor share is in the medium, and the capital share is
not so large, then, it may or may not be Pareto efficient, if the resource share
is relatively small, (roughly, labor is not much important in production), then,
efficiency holds; if it is relatively large, (roughly, labor is quite much important
in production), then, inefficiency holds.

Because for each factor, the factor income share is the index of its intensity
in the production, then, we can say roughly that if the technology is capital-
intensive (either the physical capital or the natural capital), then the economy is
efficient; on the contrary, if the technology is labor-intensive, then, the economy
is inefficient.

A particular case, included in the above general setting, is that there is
neither technical growth nor population growth. In this case, it’s easy to see
that Kt will converge to some positive level, denoted as K∗. When β = κ, then,
K∗ = KGR, where KGR is the so-called Golden rule level of capital; when β < κ,
then, K∗ < KGR, and the economy is efficient; when β > κ, then, K∗ > KGR,
that is, it occurs the capital over-accumulation, the economy is inefficient.

Concerning the sustainability, from Corollary 6, we have
Proposition 9. If 1 +λ < (1 +n)γ , then, the economy per capita contracts

asymptotically; if 1 +λ = (1 +n)γ , then, the economy is sustainable in the long
run; if 1 + λ > (1 + n)γ , then the economy per capita booms asymptotically.

That is, that the economy (per capita) contracts or not depends only on
the technical progress rate, population growth rate and the resource share, it
has nothing to do with the distribution of capital share and labor share. Of
course, here, we have already made the basic assumption that the resource has
a sufficiently large intrinsic growth rate and carrying capacity of the environment
for it.

6 Conclusion

We consider a two-period OLG model with three factors of production: physical
capital, labor and natural resource. We discuss the issue of Pareto efficiency of
the equilibrium allocation.

Our main contribution to the literature is that we present general sufficien-
cy conditions and general necessary conditions for the Pareto efficiency of the
equilibrium allocation in the OLG economies with natural resources. Among
the related previous works, the seminal paper AMSZ(1989) can not cover the
case with natural resources, and Koskela, et al (2002), an important paper, does
not consider physical capital. Then, our general results are applied to several
concrete cases.

A minor contribution is that for the case, where the regeneration function
of the natural resource is linear, the utility function is additive log function,
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the production function is of Cobb-Douglas, we give a rigorous proof for the
existence and uniqueness of the equilibrium and the Pareto efficiency of the
equilibrium allocation without any additional assumptions on technical progress
and population change and the economic development path (e.g. the assumption
of BGP).

Another contribution is that we find when the regeneration function of the
natural resource is linear, the utility function is additive log function, the pro-
duction function is of general CES (rather than Cobb-Douglas), there exist a
continuum of trivial steady state equilibria, besides a (unique) possible nontriv-
ial steady state equilibrium, which is Pareto efficient. If the factors are com-
plementary, then, all the trivial steady state equilibrium allocations are Pareto
efficient. If the factors are substitutable, then, some are Pareto efficient, some
are not, depending on the speed of harvesting, the slower, the more prone to be
Pareto efficient.

Still another contribution is that we find when the regeneration function is
quadratic (with additive log utility function), the unique equilibrium allocation
may or may not be Pareto efficient, according to the distribution of the income
share of the three factors. Roughly, if the technology is capital-intensive (either
the physical capital or the natural capital), then the economy is efficient; on the
contrary, if the technology is labor-intensive, then, the economy is inefficient.

To sum up the applications in the two of the above examples: utility function
is additive log function, production function is of Cobb-Douglas, but the natural
resource regeneration function is either linear or quadratic, we find that when
the resource regeneration function is linear, then, the economy is always Pareto
efficient, the inefficiency issue disappears; when the resource regeneration func-
tion is quadratic, then, the inefficiency issue emerges again, just returning to
the classical Diamond OLG economy, and, roughly, the phenomenon is almost
the same as in Diamond, that is, when the industry is capital-intensive, then,
efficient; when the industry is labor-intensive, then, the economy is inefficient.

Finally, we pose some problems to study further. One is a conjecture that
under some assumptions on the production function and the utility function,
the equilibrium allocation is Pareto efficient, if and only if

∞∑
t=1

1

DtωtNt
=∞.

Another problem is to extend our study to multi-sector OLG models with
natural resources.

Still another problem is to study the optimal intervention when the economy
is Pareto inefficient.

A further problem is to study the efficiency issue at the scenario that the
technology is endogenous, e.g., it can be chosen from a set of available technolo-
gies.

Acknowledgements. Thanks to the Key Laboratory of Mathematical Eco-
nomics and Quantitative Finance (Peking University), Ministry of Education of
P.R.China.
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Appendix

The proof of proposition 3 needs the following Lemma 1. A proof of Lemma
1 can be found in Farmer et al (2010), which uses the eigenvalues method in the
planar dynamical difference system. Here, we present another proof, which has
its own interest.
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Lemma 1. The following two statements about {St, Rt}t∈N are equivalent:
(I) for any t ∈ N,

St+1 = η(St −Rt) ≥ 0,

Rt+1 =
η

α
[(θ + γ)Rt − γSt] ≥ 0;

(II) for any t ∈ N,

St = (ηδ)tS0,

Rt = τ(ηδ)tS0.

Proof. One can easily verify that (II) implies (I). In the sequel, we prove
that (I) implies (II). First of all, we show that for any t ∈ N and any n ∈ N, it
holds that

xnSt ≤ Rt ≤ ynSt, (25)

where

xn+1 =
γ + αxn

θ + γ + αxn
, x0 = 0,

yn+1 =
γ + αyn

θ + γ + αyn
, y0 = 1.

We prove (25) by use of the method of mathematical induction wrt n. First,
obviously, (25) holds for n = 0 and any t ∈ N. Now, suppose that (25) holds for
n and any t ∈ N. Then, for any t ∈ N, notice that (25) holds for n and t + 1,
that is,

xnSt+1 ≤ Rt+1 ≤ ynSt+1,

which is equivalent to
xn+1St ≤ Rt ≤ yn+1St,

and hence, (25) also holds for n + 1 and any t ∈ N. It follows that (25) holds
for any t ∈ N and any n ∈ N.

Next, clearly, {xn}n∈N is increasing and bounded above, and {yn}n∈N is
decreasing and bounded below, and hence, each of these two sequences has
limit, and obviously, their limits are the same, denoted as z, which satisfies that

z =
γ + αz

θ + γ + αz
,

noticing that z ∈ (0, 1), and hence, we get that z = τ , where τ is defined above.
Consequently, for any t ∈ N,

Rt = τSt,

which yields (I) immediately. The proof is completed.
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Proof of Theorem 1. Suppose the equilibrium allocation is not Pareto
efficient. Then, there is a feasible allocation (a′t, b

′
t,K

′
t, S
′
t, R
′
t)t∈N, which is a

Pareto improvement of the equilibrium allocation, therefore,

N−1b
′
0 ≥ (1 + r0)K0 + p0S0, (26)

Nta
′
t +

Ntb
′
t+1

1 + rt+1
≥ Ntωt +

pt+1

1 + rt+1
S′t+1 − pt(S′t −R′t), ∀t ∈ N, (27)

and at least one of these inequalities holds strict inequality. Clearly, (27) is
equivalent to

DtNta
′
t +Dt+1Ntb

′
t+1

≥ DtωtNt +
(
Dt+1pt+1S

′
t+1 −DtptS

′
t

)
+DtptR

′
t, ∀t ∈ N. (28)

Since for any t ∈ N, the maximum profit for any firm is 0, and noticing the
condition of feasibility, then, we have

(1 + rt)K
′
t + ωtNt + ptR

′
t

≥ F t(K ′t, Nt, R
′
t)

≥ Nta
′
t +Nt−1b

′
t +K ′t+1,

therefore,

(1 + r0)K0 + ω0N0 + p0R
′
0

≥ N0a
′
0 +N−1b

′
0 +K ′1, (29)

and for any t ∈ N,

DtK
′
t+1 +Dt+1ωt+1Nt+1 +Dt+1pt+1R

′
t+1

≥ Dt+1Nt+1a
′
t+1 +Dt+1Ntb

′
t+1 +Dt+1K

′
t+2. (30)

Since at least one of the inequalities in (26) and (28) has the strict inequality,
then, there is ε > 0 such that for sufficiently large T , summing up (26), (28),
(29) and (30) for t = 0 through t = T − 1, we get

DTωTNT > ε+DT (NTa
′
T +K ′T+1) +DT pT (S′T −R′T ) ≥ ε.

Consequently,
lim inf
t→∞

DtωtNt > 0.

A contradiction. And hence, the equilibrium allocation is efficient. The proof
is completed.

Proof of Theorem 1’. It suffices to show that the equilibrium allocation
is the solution of the optimization problem in Proposition 2. To this end, put
the Lagrangian

L = u(b0)
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+

∞∑
t=0

λt(F
t(Kt, Nt, Rt)−Ntat −Nt−1bt −Kt+1)

+

∞∑
t=0

µt(G(St −Rt)− St+1)

+

∞∑
t=0

θt(U(at, bt+1)− U∗t ),

where U∗t is the utility value of the individual of t-generation under the equilib-
rium allocation. Then, a feasible allocation (at, bt,Kt, St, Rt)t∈N is the solution
of the optimization problem in Proposition 2, if only it satisfies the following
conditions: there exist (λt, µt, θt)t∈N such that for any t ∈ N,

0 =
∂L

∂b0
= u′(b0)− λ0N−1,

0 =
∂L

∂bt+1
= θtUb(at, bt+1)− λt+1Nt,

0 =
∂L

∂at
= θtUa(at, bt+1)− λtNt,

0 =
∂L

∂Kt+1
= λt+1F

t+1
K (Kt+1, Nt+1, Rt+1)− λt,

0 =
∂L

∂St+1
= µt+1G

′(St+1 −Rt+1)− µt,

0 =
∂L

∂Rt
= λtF

t
R(Kt, Nt, Rt)− µtG′(St −Rt),

and TVCs
lim
t→∞

λtKt+1 = 0, lim
t→∞

µtSt+1 = 0.

These conditions are equivalent to the following conditions: for any t ∈ N,

F t+1
R (Kt+1, Nt+1, Rt+1)G′(St −Rt)

F tR(Kt, Nt, Rt)

= F t+1
K (Kt+1, Nt+1, Rt+1) =

Ua(at, bt+1)

Ub(at, bt+1)
,

and

lim
t→∞

1∏t
s=1 F

s
K(Ks, Ns, Rs)

[
Kt+1 +

F tR(Kt, Nt, Rt)

G′(St −Rt)
St+1

]
= 0.

Clearly, along the equilibrium path, these conditions turns out to be

pt+1G
′(St −Rt)
pt

= 1 + rt+1 =
Ua(at, bt+1)

Ub(at, bt+1)
,
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lim
t→∞

DtVt = 0.

By Proposition 1, we get our desired results. The proof is completed.
Proof of Theorem 2. The spirit of the proof is the same as in AM-

SZ(1989). In fact, if (6) holds, then, we can construct a Pareto improvement of
the equilibrium allocation. To this end, notice that for any t ∈ N,

Ct +Kt+1 = F t(Kt, Nt, Rt),

where Ct is the total consumption at time t, defined in (1).
Now, fix (Nt, Rt)t∈N. If we fix (Ct)t≥1 and make K1 decreasing a bit, then,

accordingly, C0 will increase strictly, and for any t ≥ 1, Kt+1, as a function of
K1, is strictly increasing, and by the chain rule, we can get that the elasticity
of Kt+1 with respect to K1

dKt+1/dK1

Kt+1/K1
=

t∏
s=1

dKs+1/dKs

Ks+1/Ks
=

t∏
s=1

1 + rs
1 + is

is bounded uniformly and decreasing to 0 exponentially as t → ∞, because of
(6). Thus, such a construction of Pareto improvement is feasible. The proof is
completed.

Proof of Theorem 2’. For any t ∈ N, by solving the individual problem
for the t-generation, we get

at =
1

1 + (ρ(1 + rt+1)1−σ)
1/σ

It,

bt+1 =
(ρ(1 + rt+1))1/σ

1 + (ρ(1 + rt+1)1−σ)
1/σ

It.

For any t ∈ N, consider the function of θ ∈ [0, 1]:

ft(θ) = u (at(1− θ)) + ρu

(
bt+1 +

Nt+1

Nt
at+1θ

)
.

It’s easy to see that ft(θ) is strictly increasing in [0, θ∗t ], where

θ∗t =
1− σ−1/σt

1 + ρ−1/σ(σt(1 + rt+1))1−1/σ
,

where

σt =
ρ−1/σ+ + (1 + rt+1)(1−σ)/σ

ρ−1/σ+ + (1 + rt+2)(1−σ)/σ
Dt+1It+1Nt+1

DtItNt
.

By (7) and (8), we know that there exist θ∗ ∈ (0, 1) and T ∈ N such that for
any t ≥ T ,

θ∗t > θ∗.
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Then, for any t ≥ T ,
ft(θ

∗) > ft(0).

Therefore, the feasible allocation (a′t, b
′
t,Kt, St, Rt)t∈N is a Pareto improvement

of the equilibrium allocation (at, bt,Kt, St, Rt)t∈N, where for any t < T ,

a′t = at, b′t = bt;

and for any t ≥ T ,

a′t = at(1− θ∗), b′t = bt +
Nt
Nt−1

atθ
∗.

The proof is completed.
Proof of Proposition 4. The social planner’s problem (P) is

max

∞∑
t=0

δt (δ ln at + ρ ln bt) ,

s.t. Kt+1 = AtK
α
t N

β
t R

γ
t −Ntat −Nt−1bt, ∀t ∈ N,

St+1 = η(St −Rt), ∀t ∈ N,

and all variables are nonnegative, where K0, S0 are given. By transformation

Xt = ξ−tKt, Ht = ξ−1/γRt, Zt = ξ−1/γSt,

ξ−(t+1)Ntat =
δ

δ + ρ
ct, ξ−(t+1)Nt−1bt =

ρ

δ + ρ
ct,

where ξ =
(
gnβ

)1/(1−α)
, (P) can be reduced to (P′):

max

∞∑
t=0

δt ln ct,

s.t. Xt+1 = Xα
t H

γ
t − ct, ∀t ∈ N,

Zt+1 = η(Zt −Ht), ∀t ∈ N,

and all variables are nonnegative, where X0, Z0 are given.
By the standard dynamic programming approach (see Stokey, Lucas, Prescot-

t(1989)), we have that the unique optimal Markovian strategy for (P′) is

c = (1− αδ)τγXαZγ , H = τZ.

Then, the optimal Markovian strategy for (P) is unique, and satisfies that for
∀t ∈ N,

Ntat =
β

1 + ρ
Yt, Nt−1bt =

(
α+

γ

τ

)
Yt; Yt = AtK

α
t N

β
t R

γ
t ;

Kt+1 = αδYt, St = (ηδ)tS0, Rt = τ(ηδ)tS0,
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which is just the equilibrium allocation. The theorem is proved.
Proof of Corollary 6. For any t ∈ N, denote

xt = St −Rt, zt = Kt(1 +m)−t.

Since

Kt+1 =
αRt+1

Rtg′(xt)
Yt =

αRt+1

R1−γ
t g′(xt)

Kα
t (1 +m)t(1−α),

then,

zt+1 =
αRt+1

(1 +m)R1−γ
t g′(xt)

zαt ,

then, there exists z > 0 such that

lim
t→∞

zt = z.

Thus,
lim
t→∞

K̊t = 1 +m,

which yields
lim
t→∞

Y̊t = 1 +m.

Therefore,
lim
t→∞

k̊t = lim
t→∞

ẙt = lim
t→∞

åt = lim
t→∞

b̊t = ϕ.

Since,

1 + rt =
αYt
Kt+1

Kt+1

Kt
=
Rtg

′(xt)

Rt+1

Kt+1

Kt
=
Rtg

′(xt)

Rt+1
(1 +m)

zt+1

zt
,

then,
lim
t→∞

(1 + rt) = g′(x)(1 +m).

Noticing that for any t ∈ N,

ItNt = Yt

[
β +

γ

Rt

(
G(xt)

G′(xt)
− xt

)]
,

therefore,

lim
t→∞

τ̊t = lim
t→∞

Y̊t
1 + rt+1

=
1

G′(x)
.

The proof is completed.
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